MicroLogic[™] 5.0P and 6.0P Electronic Trip Units

Instruction Bulletin

48049-137-06EN R09/2023

Legal Information

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this guide are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owners.

This guide and its content are protected under applicable copyright laws and furnished for informational use only. No part of this guide may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the guide or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric products and equipment should be installed, operated, serviced, and maintained only by qualified personnel.

As standards, specifications, and designs change from time to time, information contained in this guide may be subject to change without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this material or consequences arising out of or resulting from the use of the information contained herein.

Schneider Electric, Square D, MicroLogic, PowerPacT and MasterPacT are trademarks and the property of Schneider Electric SE, its subsidiaries, and affiliated companies. All other trademarks are the property of their respective owners.

Table of Contents

Hazard Categories and Special Symbols	7
Please Note	8
General Information	9
Introduction	9
Communications	10
Power and Control Settings	10
Switch Settings	10
MicroLogic 5.0P Trip Unit	11
MicroLogic 6.0P Trip Unit	12
LSIG Protection	13
Long-Time Protection	13
Short-Time Protection	15
Instantaneous Protection	16
Ground-Fault Protection for Equipment	17
MicroLogic Trip Unit Configuration	18
Control Power	18
External Power Supply	19
MicroLogic Setup	20
Advanced Protection	20
Neutral Protection	20
Alarms	21
Minimum (Under) and Maximum (Over) Demand Current and Voltage	
Protection	23
Current or Voltage Unbalance Protection	23
Reverse Power Protection (rPmax)	24
Minimum (Under) and Maximum (Over) Frequency Protection	24
Load Shedding	25
Phase Rotation Protection	25
M2C and M6C Programmable Contact Kits	26
Zone-selective Interlocking	26
Metering	27
Trip Unit Testing	27
Operation Counter	27
Indicator Lights	28
Overload Indicator Light	28
Trip Indicator Lights	28
Test/Reset Button	29
Graphic Display Screen	29
Contact Wear Indicator	29
Graphic Display Navigation	30
Graphic Display Navigation Buttons	30
Bar Graph Display and Menus	31
Metering Menu	32
Maintenance Menu	33

Protection Menu	
Trip Unit Configuration	
Trip Unit Parameters Adjustment	
M2C/M6C Programmable Contacts	
MicroLogic Trip Unit Setup	41
Metering Setup	45
Communication Module Setup	
Switch Settings Adjustment	50
Examples	52
MicroLogic 5.0P Trip Unit	52
MicroLogic 6.0P Trip Unit	53
Zone-Selective Interlocking (ZSI)	54
Trip Unit Operation Verification	55
Trip Unit Resetting	55
Equipment Ground-Fault Trip Functions Testing	
Trip Unit Status Check	57
Operation	58
Metered Values	58
Current Levels	59
Voltage Levels	60
Power I evels	61
Energy Levels	62
Frequency	63
Trip Unit History	
Trip History	
Alarm History	
Operation Counter	
Contact Wear	
Protection Setup	
Amperage Protection	
Voltage Protection	
Other Protection	
Current Load Shedding	
Power Load Shedding	
Trin I Init Replacement	74
Required Tools	
Prenaration	
Record Switch Settings	
Circuit Breaker Disconnection	
Circuit Breaker Accessory Cover Removal	
Rating Plug Removal	
Trip Unit Replacement	70
Battery Installation	
Trin Init Installation	
Circuit Breaker Accessory Cover Replacement	 ۵۵
Trin Unit Installation Check	סס ספ

Secondary Injection Testing	80
Primary Injection Testing	80
Check Accessory Operation	80
Trip Unit Setup	80
Circuit Breaker Reconnection	81
Adjustable Rating Plug Replacement	82
Remove Rating Plug	82
Install New Rating Plug	83
Battery Replacement	84
Circuit Breaker Disconnection	84
Accessory Cover Removal	
Withstand Module Shifting	84
Battery Replacement	85
Withstand Module Replacement	85
Accessory Cover Replacement	
Circuit Breaker Reconnection	86
Appendix A—Graphic Display Flowcharts	
Metering Menu Flowchart	87
Maintenance Menu Flowchart	
Protection Menu Flowchart	
Appendix B—Default Settings and Tolerances	90
Default Settings	90
Metering Range and Accuracy	94
Appendix C—Network/Com Access	96
Remotely Readable Values	96
List of Registers	
Appendix D—Trip Unit Voltage Supply Architecture	113
Minimum Voltage Protection	113
Voltage Unbalance Protection	114
Loss of Multiple Phases	116
Appendix E—Trip Unit Settings	117
Index	

Hazard Categories and Special Symbols

Read these instructions carefully and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this bulletin or on the equipment to warn of hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of either symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

Failure to follow these instructions will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

CAUTION indicates a hazardous situation which, if not avoided, **could result in** minor or moderate injury.

Failure to follow these instructions can result in injury or equipment damage.

NOTICE

NOTICE is used to address practices not related to physical injury. The safety alert symbol is not used with this signal word.

Failure to follow these instructions can result in equipment damage.

NOTE: Provides additional information to clarify or simplify a procedure.

Please Note

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved.

General Information

Introduction

MicroLogic[™] trip units provide adjustable tripping functions on electronic trip circuit breakers. The product name (A) specifies the level of protection provided by the trip unit.

MicroLogic 5.0P
Type of protection 2—Basic IEC protection (LSO) 3—Basic UL protection (LI) 5—Selective protection (LSI) 6—Selective protection plus ground fault protection for equipment (LSIG)
Trip unit series 0—Indicates the first version
CType of measurement None—Provides protection only A—Provides protection plus ammeter measuremen

P—Provides protection plus power measurements H—Provides protection plus harmonic metering

MicroLogic trip units are field replaceable to allow for upgrading of the trip unit in the field. For complete information on available circuit breaker models, frame sizes, interrupting ratings, sensor plugs, rating plugs and trip units, see the product catalog.

А	Product Name
В	Trip Indicators
С	Battery Housing
D	Adjustable Switches
Е	Switch Cover
F	Sealing Tab
G	Adjustable Rating Plug
н	Reset Button for Battery Status Check and Trip Indicators
I	External Terminal Block Connection

Communications

AWARNING

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

- Change default passwords at first use to help prevent unauthorized access to device settings, controls and information.
- Disable unused ports/services and default accounts to help minimize pathways for malicious attackers.
- Place networked devices behind multiple layers of cyber defenses (such as firewalls, network segmentation, and network intrusion detection and protection.
- Use cybersecurity best practices (for example, least privilege, separation of duties) to help prevent unauthorized exposure, loss, modification of data and logs, or interruption of services.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

MicroLogic trip units can communicate with other devices via "Modbus" through the Circuit Breaker Communication Module (BCM). For information on the communication feature, see the product catalog and Modbus Communications System Product Data Bulletin 0613DB0702.

Power and Control Settings

Using the graphic display screen and keypad on the trip unit, trip unit options can be set or system measurements checked. See Graphic Display Navigation, page 30 for more information. System measurements can also be checked using the System Manager Software (SMS), Version 3.2 or later, or other network system management software.

Switch Settings

On the face of the trip unit are adjustable switches to allow changing of the LSI or LSIG trip characteristics of the trip unit. Trip units are shipped with the long-time pickup switch set at 1.0 and all other trip unit switches set at their lowest settings. All advanced protection settings are turned "off."

Fine switch adjustments can be made with the navigation keys. See Switch Settings Adjustment, page 50.

MicroLogic 5.0P Trip Unit

Figure 2 - 5.0P Trip Unit

А	Graphic display screen
В	Protection menu button (Button includes an LED indicating the active menu)
С	Maintenance menu button (Button includes an LED indicating the active menu)
D	Metering menu button
Е	Down button
F	Up button
G	Enter button
н	Long-time pickup (Ir) switch
Ι	Long-time delay (tr) switch
J	Short-time pickup (Isd) switch
К	Short-time delay (tsd) switch
L	Instantaneous pickup (li) switch
М	Test plug receptacle
Ν	Long-time pickup overload indicator light
0	Reset button for battery status check and trip indicator LED
Ρ	Self-protection and advanced-protection indicator light
Q	Short-time or instantaneous trip indicator light
R	Long-time trip indicator light

MicroLogic 6.0P Trip Unit

Figure 3 - 6.0P Trip Unit

А	Graphic display screen
В	Protection menu button (Button includes an LED indicating the active menu)
С	Maintenance menu button (Button includes an LED indicating the active menu)
D	Metering menu button
Е	Down button
F	Up button
G	Enter button
н	Long-time pickup (Ir) switch
Ι	Long-time delay (tr) switch
J	Short-time pickup (Isd) switch
к	Short-time delay (tsd) switch
L	Instantaneous pickup (li) switch
М	Ground-fault protection pickup (Ig) switch
N	Ground-fault protection delay (tg) switch
0	Test plug receptacle
Р	Ground-fault push-to-trip button
Q	Long-time pickup overload indicator light
R	Reset button for battery status check and trip indicator LED
S	Self-protection and advanced-protection indicator light
Т	Ground-fault trip indicator light
U	Short-time or instantaneous trip indicator light
V	Long-time trip indicator light

LSIG Protection

Figure 4 - Long-Time

Protection Switches

MicroLogic 5.0P

Trip Unit

In 2000 A

Trip Unit

D

n 2000 A

MicroLogic 6.0P

Long-Time Protection

Long-time protection protects equipment against overloads.

- · Long-time protection is standard on all trip units.
- Long-time pickup (Ir) (A) sets the maximum current level based on sensor plug rating (In) which the circuit breaker will carry continuously. If current exceeds this value, circuit breaker will trip after the preset time delay. The long-time pickup (Ir) is adjustable from 0.4–1.0 times the circuit breaker sensor plug rating (In) (D).
- Long-time delay (tr) (B) sets the length of time that the circuit breaker will carry an overcurrent below the short-time or instantaneous pickup current level before tripping. Two options are available:
 - Standard I²t long-time delay curve. See Long-Time Protection, page 13 for I²t long-time delay settings.
 - Idmtl (inverse definite minimum time lag) long-time delay curves vary in slope to enhance selectivity.

Option	Description	Curve
DT	Definite time	Constant
SIT	Standard inverse time	10.5t
VIT	Very inverse time	lt
EIT	Extremely inverse time	l2t
HVF	High-voltage fuse compatible	l4t

 The overload indicator light (C) indicates that the long-time pickup threshold Ir has been exceeded.

NOTE: MicroLogic trip units are powered from the circuit to always provide fault protection. All other functions (display, metering, communications, etc.) require external power. See MicroLogic Setup, page 20 for more information.

Table 1 - MicroLogic Trip Unit I²t Long-Time Delay Values

Setting ¹	Long-Time Delay in Seconds ²											
tr at 1.5 x Ir	12.5	25	50	100	200	300	400	500	600			
tr at 6 x Ir	0.5	1	2	4	8	12	16	20	24			
tr at 7.2 x Ir	0.34 ³	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6			

- For MasterPact[™] NT and NW circuit breakers, sensor value (In) can be changed by replacing sensor plug (D) located below the trip unit. For further information, see the instructions packed with the sensor plug replacement kit.
- Neutral protection is not available when Idmtl protection is selected.
- The Idmtl selections do not utilize the same thermal imaging feature as the I²t long-time protection function. Both the basic long-time protection and Idmtl EIT are I²t curves, but the different thermal imaging features result in different system performances. For welding applications it is recommended the basic I²t long-time protection be used to ensure expected system performance.

^{1.} Ir = In x long-time pickup. In = sensor rating. Trip threshold between 1.05 and 1.20 Ir.

^{2.} Time-delay accuracy +0/-20%.

^{3.} When tsd is set to 0.4 off, then tr = 0.5 instead of 0.34.

- Both long-time pickup and long-time delay are located on the field-replaceable adjustable rating plug. To change settings to more precisely match the application, various rating plugs are available. For instructions on replacing the rating plug, see Adjustable Rating Plug Replacement, page 82.
- Long-time protection uses true RMS measurement.

Thermal imaging provides continuous temperature rise status of the wiring, both before and after the device trips. This allows the circuit breaker to respond to a series of overload conditions which could cause conductor overheating, but would go undetected if the long-time circuit was cleared every time the load dropped below the pickup setting or after every tripping event.

NOTE: If checking trip times, wait a minimum of 15 minutes after circuit breaker trips before resetting to allow the thermal imaging to reset completely to zero or use a test kit to inhibit the thermal imaging.

Option	Setting ^₄		Long-Time Delay in Seconds 0.52 1 2 4 8 12 16 20 24 24 0.52 1 2 4 8 12 16 20 24 24 0.52 1 2 4 8 12 16 16.6										
	tr at 1.5 x Ir	0.52	1	2	4	8	12	16	20	24	+0/-20%		
DT	tr at 6 x Ir	0.52	1	2	4	8	12	16	20	24	+0/-20%		
	tr at 7.2 x Ir	0.52	1	2	4	8	12	16	16.6	16.6	+0/-20%		
	tr at 10 x Ir	0.52	1	2	4	8	12	16	16.6	16.6	+0/-20%		
	tr at 1.5 x Ir	1.9	3.8	7.6	15.2	30.4	45.5	60.7	75.8	91	+0/-30%		
сіт	tr at 6 x Ir	0.7	1	2	4	8	12	16	20	24	+0/-20%		
511	tr at 7.2 x Ir	0.7	0.88	1.77	3.54	7.08	10.6	14.16	17.7	21.2	+0/-20%		
	tr at 10 x Ir	0.75	0.8	1.43	2.86	5.73	8.59	11.46	14.33	17.19	+0/-20%		
	tr at 1.5 x Ir	1.9	7.2	14.4	28.8	57.7	86.5	115.4	144.2	173.1	+0/-30%		
VIT	tr at 6 x Ir	0.7	1	2	4	8	12	16	20	24	+0/-20%		
VII	tr at 7.2 x Ir	0.7	0.81	1.63	3.26	6.52	9.8	13.1	16.34	19.61	+0/-20%		
	tr at 10 x Ir	0.75	0.75	1.14	2.28	4.57	6.86	9.13	11.42	13.70	+0/-20%		
	tr at 1.5 x Ir	12.5	25	50	100	200	300	400	500	600	+0/-30%		
EIT	tr at 6 x Ir	0.76	1	2	4	8	12	16	20	24	+0/-20%		
	tr at 7.2 x Ir	0.75	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	+0/-20%		
	tr at 10 x Ir	0.75	0.76	0.76	1.41	2.82	4.24	5.45	7.06	8.48	+0/-20%		
	tr at 1.5 x Ir	164.5	329	658	1316	2632	3950	5265	6581	7900	+0/-30%		
	tr at 6 x Ir	0.76	1	2	4	8	12	16	20	24	+0/-20%		
пуг	tr at 7.2 x Ir	0.75	0.76	1.16	1.42	3.85	5.78	7.71	9.64	11.57	+0/-20%		
	tr at 10 x Ir	0.75	0.75	0.76	0.76	1.02	1.53	2.04	2.56	3.07	+0/-20%		

Table 2 - MicroLogic Trip Unit Idmtl Long-Time Delay Values

- 5. Tolerance = +0/-60%
- 6. Tolerance = +0/-40%

^{4.} Ir = $\ln x \log$ -time pickup. In = sensor rating. Trip threshold between 1.05 and 1.20 Ir.

Short-Time Protection

Figure 5 - Short-Time Protection Switches

MicroLogic 5.0P Trip Unit

MicroLogic 6.0P Trip Unit

Short-time protection protects equipment against short circuits.

- Short-time protection is standard on 5.0P and 6.0P trip units.
- The short-time pickup (Isd) (A) sets current level (below instantaneous trip level) at which circuit breaker will trip after the preset time delay.
- The short-time delay (tsd) (B) sets the length of time that the circuit breaker will carry an overcurrent above the short-time pickup current level before tripping.
- The I²t on/I²t off option provides improved selectivity with downstream protective devices:
 - With I²t off selected, fixed time delay is provided.
 - With I²t on selected, inverse time I²t protection is provided up to 10 x Ir. Above 10 x Ir, fixed time delay is provided.
- Intermittent currents in the short-time tripping range which do not last sufficiently long to trigger a trip are accumulated and shorten the trip delay appropriately.
- Short-time protection can be zone-selective interlocked (ZSI) with upstream or downstream circuit breakers. Setting tsd to the 0 setting turns off zone-selective interlocking.
- · Short-time protection uses true RMS measurement.
- Short-time pickup and delay can be adjusted to provide selectivity with upstream or downstream circuit breakers.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

Table 3 - MicroLogic Trip Unit Short-Time Delay Values

Setting	Short-Time Delay							
l²t off (ms at 10 lr) (seconds)	0	0.1	0.2	0.3	0.4			
l²t on (ms at 10 lr) (seconds)	-	0.1	0.2	0.3	0.4			
tsd (min. trip) (milliseconds)	20	80	140	230	350			
tsd (max. trip) (milliseconds)	80	140	200	320	500			

Instantaneous Protection

Instantaneous protection protects equipment against short circuits with no intentional time delay.

- Instantaneous protection (Ii) (A) is standard on all trip units.
- Instantaneous protection is based on the circuit breaker sensor rating (In).
- Circuit breaker open command is issued as soon as threshold current is exceeded.
- Instantaneous protection uses peak current measurement.
- When instantaneous protection switch is set to off, the instantaneous protection is disabled.

Table 4 - MicroLogic Instantaneous Values

Setting	Interruption Current										
li (= ln x)	2	3	4	6	8	10	12	15	off		

MicroLogic 6.0P Trip Unit

Figure 6 -

Trip Unit

In 2000 A

Instantaneous

MicroLogic 5.0P

Protection Switches

li = instantaneous

In = sensor rating Pickup accuracy ± 10%

Ground-Fault Protection for Equipment

Equipment ground-fault protection protects conductors against overheating and faults from ground-fault currents (\leq 1200 A).

- Equipment ground-fault protection is standard on 6.0P trip units.
- Ground-fault pickup (Ig) (A) sets ground current level where circuit breaker will trip after the preset time delay.
- Ground-fault delay (tg) (B) sets the length of time that the circuit breaker will carry a ground-fault current above the ground-fault pickup current level before tripping.
- Equipment ground-fault protection can be zone-selective interlocked (ZSI) with upstream or downstream circuit breakers. Setting the ground-fault delay (tg) to the 0 setting turns off zone-selective interlocking.
- Neutral protection and equipment ground-fault protection are independent and can operate concurrently.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

Table 5 - MicroLogic Trip Unit Ground-Fault Pickup Values

lg (= ln x)	А	В	С	D	E	F	G	н	J
In ≤ 400 A	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
400 A < In ≤ 1200 A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
In > 1200 A	500 A	640 A	720 A	800 A	880 A	960 A	1040 A	1120 A	1200 A

In = sensor rating. Ig = ground-fault pickup.

Table 6 - MicroLogic Trip Unit Ground-Fault Delay Values

Setting	Ground-Fault Delay					
l²t off (ms at ln) (seconds)	0	0.1	0.2	0.3	0.4	
l ² t on (ms at In) (seconds)	_	0.1	0.2	0.3	0.4	
tsd (min. trip) (milliseconds)	20	80	140	230	350	
tsd (max. trip) (milliseconds)	80	140	200	320	500	

Figure 7 - Ground-Fault Protection Switches

MicroLogic Trip Unit Configuration

Control Power

The P trip unit is designed to be used with an external 24 Vdc power supply. The large LCD display used by the P trip unit requires too much current to be powered by current flow through the circuit breaker.

The P trip unit has a circuit voltage power supply which will power the trip unit when there is approximately 150 Vac or more between two phases. The standard configuration for the voltage probes inside the circuit breaker is at the bottom connections. If the circuit breaker is open in a top fed application, there is no voltage at the bottom of the circuit breaker and the trip unit will not be powered.

The following will be powered and functional even if the trip unit is not externally powered:

- Fault protection for LSIG functions. The P trip unit is fully circuit powered for fault protection.
- LED trip indication (powered by an onboard battery). The battery's only function is to provide LED indication if all other power is off.
- Ground-fault push-to-trip button works for testing ground fault when the trip unit is
 powered by the circuit voltage power supply. The ground-fault push-to-trip is also
 functional if a test kit is powering the trip unit.

The following will be powered and functional with external power:

- · All of the above functions which are functional without external power.
- LCD display and backlight are functional. Backlight intensity is not controlled or adjustable, and may be different from one trip unit to another.
- All metering, monitoring, and history logs are functional.
- Communications from the trip unit to M2C and M6C programmable contact modules are powered by a 24 Vdc power supply at F1 and F2. The M6C also required an external 24 Vdc power supply.
- Modbus communciations are functional, using a separate 24 Vdc power supply for the circuit breaker communications module. This separate 24 Vdc power supply is required to maintain the isolation between the trip unit and communications.
- The ground-fault push-to-trip is also functional if a test kit is powering the trip unit.

External Power Supply

HAZARD OF SHOCK, ARC FLASH OR EQUIPMENT DAMAGE

Trip unit and communication module must use separate power supplies.

Failure to follow these instructions can result in injury or equipment damage.

The trip unit can be powered by:

- 24 Vdc external power supply (recommended).
- Over 150 V on the bottom circuit breaker terminals on two phases.
- Over 150 V on the top circuit breaker terminals with external voltage option.

Table 7 - Power Supply Specifications

Function	Specification
Power for Trip Unit Alone	24 Vdc, 50 mA
Minimum Input-to-Output Isolation	2400 V
Output (Including Max. 1% Ripple)	±5%
Dielectric Withstand (Input/Output)	3 kV rms
	Connections UC3
Connections	F1 (-) 24 Vdc

Power supply is used for:

Graphic screen display when the circuit breaker is open and top fed.

Option of linking an alarm to a relay output.

To maintain date and time when the circuit breaker is open.

MicroLogic Setup

Use the Maintenance Menu by pressing the wrench key.

NOTE: If trip unit is connected to a communication network which provides date and time synchronization, date/time cannot be set from trip unit.

See MicroLogic Trip Unit Setup, page 41 for step-by-step instructions to set up the MicroLogic trip unit.

See Trip Unit Configuration, page 38 for other trip unit configurations instructions.

Figure 8 - MicroLogic Setup

Advanced Protection

Neutral Protection

Neutral protection protects neutral conductors against overheating.

- For a three-pole circuit breaker, neutral protection is possible if a neutral current transformer is used.
 - Adjust the neutral using the trip unit keypad.
 - Possible settings are OFF, N/2, N, or 1.6N.
 - Factory setting is OFF.
 - Oversize neutral protection (1.6N) requires use of the appropriate oversize neutral current transformer.

HAZARD OF EQUIPMENT DAMAGE

If a four-pole circuit breaker neutral pole switch is set to 4P3D setting, the current in the neutral must not exceed the rated current of the circuit breaker. For a three-pole circuit breaker with oversize neutral protection (1.6N), select the appropriate oversize neutral current transformer.

Failure to follow these instructions can result in injury or equipment damage.

- For a four-pole circuit breaker, set system type using the circuit breaker neutral selector dial Neutral Protection, page 20.
 - Make fine adjustments using the trip unit keypad, with the circuit breaker dial setting providing the upper limit for adjustment.
 - Factory setting is 4P4D.
- · Neutral protection conductor type has four possible settings:
 - Off—Neutral protection is turned off.
 - N/2—Neutral conductor capacity is one-half that of the line conductors.
 - N-Neutral conductor capacity is the same as that of the line conductors.
 - 1.6N—Neutral conductor capacity is 1.6 times that of the line conductors. (Three-pole circuit breaker only.)

Table 8 - Neutral Protection Settings for Four-Pole Circuit Breaker

Figure 9 - Four-Pole Circuit Breaker Neutral Selector Dial

Circuit Breaker Selector Dial	Available Keypad Setting
4P 3D	Off, N/2, N
3P N/2	N/2
4P 4D	N/2,N

Table 9 - MicroLogic Trip Unit Conductor Type

Setting	Long-Time Pickup		Short-Tme Pickup		Instantaneous		Ground-Fault Pickup	
octing	Trip Unit	Neutral	Trip Unit	Neutral	Trip Unit	Neutral	Trip Unit	Neutral
OFF	lr	None	lsd	None	li	None	lg	None
N/2	lr	1/2 Ir	lsd	1/2 Isd	li	li	lg	lg
N	lr	lr	Isd	lsd	li	li	lg	lg
1.6N	lr	1.6 x lr	lsd	1.6 x Isd ⁷	li	li	lg	lg

Alarms

Alarms can be enabled or disabled for protection or load shedding.

- When an alarm occurs, an entry is made in the alarm log.
- For a trip unit to activate an alarm, both the pickup level and time delay must be exceeded. Therefore for LSIG protection and advanced protection programmed to trip the circuit breaker, the trip unit will not activate the alarm until the circuit breaker trips. (For example, if a relay is programmed for the long-time pickup Ir, the trip unit will not signal an alarm when the long-time overload indicator lights. The trip unit will only activate the alarm once the long-time overload exceeds the time delay and trips the circuit breaker.)
- Link alarms to a visual or audible signal by programming the optional M2C or M6C module contacts, when an external 24 V power supply is used on the trip unit.
- View alarms by:
 - History logs menu
 - The network system management software

^{7.} In order to limit the range, limited to 10 x In

- M2C/M6C contact characteristics:
 - Minimum load of 100 mA/24 V
 - Breaking capacity at a 0.7 power factor

240 Vac	5 A
380 Vac	3 A
24 Vdc	1.8 A
48 Vdc	1.5 A
125 Vdc	0.4 A
250 Vdc	0.15 A

• When several alarms are activated, screen response/refresh time will be slower.

See Appendix B—Default Settings and Tolerances, page 90 for default and range values.

Table	10 -	Trip	Unit	Alarms
-------	------	------	------	--------

Alarm	Menu	Symbol	Alarm	Trip
Long-time pickup	Current protection	lr	Х	х
Short-time pickup	Current protection	Isd	Х	Х
Instantaneous pickup	Current protection	li	Х	х
Ground-fault current	Current protection	<u>≠</u>	х	х
Ground-fault alarm	Current protection	Al≰	х	х
Current unbalance	Current protection	lunbal	Х	х
Phase A maximum demand current	Current protection	la max	х	х
Phase B maximum demand current	Current protection	lb max	х	х
Phase C maximum demand current	Current protection	lc max	х	х
Neutral maximum demand current	Current protection	In max	х	х
Minimum voltage (undervoltage)	Voltage protection	Vmin	Х	х
Maximum voltage (overvoltage)	Voltage protection	Vmax	Х	х
Voltage unbalance	Voltage protection	Vunbal	Х	х
Reverse power	Other protection	rPmax	Х	х
Minimum frequency (underfrequency)	Other protection	Fmin	Х	Х
Maximum frequency (overfrequency)	Other protection	Fmax	Х	х
Phase rotation	Other protection	Φ rotation	Х	_
Current load shedding	Load shedding I	Ished	Х	_
Power load shedding	Load shedding P	Pshed	Х	-

Minimum (Under) and Maximum (Over) Demand Current and Voltage **Protection**

Provides pickup and dropout values for alarm, contacts or tripping for current and voltage values. (There is no minimum for current.)

Figure 10 -Minimum/Maximum **Protection Curves**

Maximum Protection

Minimum Protection

- Pickup value (A) is set to activate an alarm or trip.
- Pickup time delay (B) is set to start timing once the pickup value has been passed.
- Dropout value (C) is set to deactivate the alarm and/or contact.
- Dropout time delay (D) is set to start timing once the dropout value has been passed.
- Minimum (under) voltage protection (V_{min}) is activated when any line-line voltage is below the minimum voltage setting.
- Maximum (over) voltage protection (V_{max}) is activated when any line-line voltage is above the maximum voltage setting.
- V_{min} has a dropout value \geq pickup value.
- V_{max} has a dropout value \leq pickup value.
- If current or voltage protection trips the circuit breaker, the circuit breaker cannot be reset until the current or voltage problem which caused the trip is corrected.
- Ground-fault alarm on the 5.0P and 6.0P trip unit is based on true rms value of the ground current.
- Do not set undervoltage protection below 80%.8

Current or Voltage Unbalance Protection

This protection applies to unbalanced values for the three-phase currents and voltages.

- Unbalance values are based on the true RMS values of the three-phase currents.
- Do not set V_{unbal} above 20%.8
- Do not use voltage unbalance protection to determine the loss of multiple phases.8

Figure 11 - Current or Voltage Unbalance Protection

⁸ For an explanation of system protection behavior, see Appendix D-Trip Unit Voltage Supply Architecture, page 113.

Reverse Power Protection (rPmax)

Reverse power protection protects alternators against absorption of the total actual power over all three phases in the event that a drive motor fails.

Figure 12 - Reverse Power Protection

- Reverse power protection applies a trip curve based on the total actual power value (A) over all three phases.
- A time delay (B) starts timing if the total actual power of the three phases is not flowing in the defined direction and if it exceeds a reverse power threshold.
- The power direction is defined during trip unit setup.

Minimum (Under) and Maximum (Over) Frequency Protection

Provides pickup and dropout values for frequency.

- Pickup value (A) is set to activate an alarm or trip.
- Pickup time delay (B) is set to start timing once the pickup value has been passed.
- Dropout value (C) is set to deactivate the alarm and/or contact.
- Dropout time delay (D) is set to start timing once the dropout value has been passed.
- F_{min} has a dropout value ≥ pickup value.
- F_{max} has a dropout value ≤ pickup value.
- When system frequency is set to 400 Hz, the frequency protection is disabled.

Figure 13 - Minimum/Maximum Frequency Curves

Minimum Protection

Maximum Protection

Load Shedding

Load shedding does not trip the circuit breaker, but may be used to activate an alarm linked to an M2C or M6C contact (controlling non-priority network loads).

- Load shedding is defined by a threshold and time delay:
 - A—Activation threshold
 - B-Activation time delay
 - C—Dropout threshold
 - D-Dropout time delay
- Power load shedding depends on the flow direction set during trip unit setup.
- Current load shedding is connected to the I²t or Idmtl long-time delay values.
- Current load shedding cannot be activated if "Long-time OFF" rating plug is installed.

Figure 14 - Load Shedding

Phase Rotation Protection

Protects the circuit when two of the three phases are reversed.

- If one of the phases is down, this protection is inactive.
- Options are ABC or ACB.
- When system frequency is set to 400 Hz, phase rotation protection is disabled.
- Do not use phase rotation protection to determine the loss of multiple phases in delta connected systems.

M2C and M6C Programmable Contact Kits

One or more alarms can be activated using an optional M2C or M6C programmable contact kit. The M2C contact kit provides two form A contacts with common neutral. The M6C contact kit provides six form C contacts. Each contact can be programmed through the trip unit for one alarm condition.

A 24 Vdc, 5 W auxiliary power supply is required for operation of trip unit/M2C or M6C contact kit combination.

NOTE: Trip unit and communication modules (BCM and CCM) must use separate power supplies. The M2C and M6C contact kits can share the trip unit auxiliary power supply.

Characteristics for M2C/M6C Programmable Contacts	V	Α
Minimum Load	24 Vdc	100 mA
	240 Vac	5 A
	380 Vac	3 A
Breaking Canacity at a Power Factor ($n f$) of 0.7	24 Vdc	1.8 A
	48 Vdc	1.5 A
	125 Vdc	0.4 A
	250 Vdc	0.15 A

Figure 15 - M2C/M6C Wiring Diagrams

M2C: 24 Vdc power supplied by trip unit

M6C: external 24 Vdc power supply required

Zone-selective Interlocking

Short-time and ground-fault protection can be interlocked to provide zone-selective interlocking.

Control wiring links several trip units in the distribution network and in the event of a fault, a trip unit will obey the set delay time only if receiving a signal from a downstream trip unit.

If the trip unit does not receive a signal, tripping will be instantaneous (with no intentional delay).

- The fault is cleared instantaneously by the nearest upstream circuit breaker.
- Thermal stresses (I²t) in the network are minimized without any effect on the correct time delay coordination of the installation.

Figure 16 shows circuit breakers 1 and 2 zone-selective interlocked.

- A fault at A is seen by circuit breakers 1 and 2. Circuit breaker 2 trips instantaneously and also informs circuit breaker 1 to obey set delay times. Thus, circuit breaker 2 trips and clears the fault. Circuit breaker 1 does not trip.
- A fault at B is seen by circuit breaker 1. Circuit breaker 1 trips instantaneously since it did not receive a signal from the downstream circuit breaker 2. Circuit breaker 1 trips and clears the fault. Circuit breaker 2 does not trip.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

NOTE: Setting short-time delay (tsd) or ground-fault delay (tg) to the 0 setting will eliminate selectivity for that circuit breaker.

Figure 16 - Zone-selective Interlocking

Metering

The MicroLogic P trip unit provides continuous metering of system values. Metered values can be checked using the graphic display screen or network system management software.

Trip Unit Testing

Trip unit LSIG functions can be tested using primary injection testing or secondary injection testing. Test trip unit using the appropriate test kit. (See Trip Unit Installation Check, page 80 for more information.)

Operation Counter

The circuit breaker communication module is required to display the total number of times the circuit breaker has opened since initial installation and since the last reset and the day/time of last reset.

Indicator Lights

Overload Indicator Light

The overload indicator light (A) lights when the Ir long-time pickup level has been exceeded.

Figure 17 - Overload Indicator Light

MicroLogic 5.0P Trip Unit

MicroLogic 6.0P Trip Unit

Trip Indicator Lights

A trip indicator light on the trip unit will light when the circuit breaker trips. If the trip unit has auxiliary power connected, the trip unit will display information about the trip.

The trip indicator light will remain lit until it is reset by pressing the reset button (A). Cause of trip should be corrected before resetting.

Ir trip indicator light (B) lights when long-time pickup (Ir) signals the circuit breaker to trip.

Isd/li trip indicator light (C) lights when short-time pickup (Isd) or instantaneous pickup (Ii) signals the circuit breaker to trip.

Ig trip indicator light (D) lights when ground-fault pickup (Ig) signals the circuit breaker to trip.

Ap self-protection/advanced-protection indicator light (E) lights when the advanced protection features cause a trip to occur, the trip unit overheats, the instantaneous override value is exceeded or a trip unit power supply failure occurs.

NOTICE

HAZARD OF EQUIPMENT DAMAGE

If the circuit breaker remains closed and the Ap light remains lit after the reset, open the circuit breaker and contact the sales office.

Failure to follow these instructions can result in equipment damage.

NOTE: In cases where a number of causes may result in tripping, the LED signalling the last cause is the only one to remain on.

Figure 18 - Trip Indicator Lights

Test/Reset Button

The test/reset button (A) must be pressed after a trip to reset the fault information on the graphic display and clear the trip indicator light.

Figure 19 - Reset Button

Graphic Display Screen

Figure 20 - Graphic Display Screen

The graphic display screen (A) shows the trip unit settings and information. Navigation buttons (B) are used to display and modify items on the screen. Default display shows current levels.

Trip unit must be powered for graphic display screen to operate. The trip unit is powered if:

- circuit breaker is on and has more than 150 V of load voltage on two phases (circuit breaker is closed or bottom fed).
- the test kit is connected and on.
- the 24 Vdc external power supply is connected.
- an external voltage tap is installed and voltage of more than 150 V is present on two phases.

Contact Wear Indicator

The trip unit keeps track of the circuit breaker contact wear when a MasterPact circuit breaker type is selected. The amount of wear on the circuit breaker contacts can be transferred when a trip unit is replaced. (External trip unit power supply is required.)

Graphic Display Navigation

Graphic Display Navigation Buttons

Display

The graphic display (A) functions if the trip unit is connected to a 24 Vdc external power supply or there is 150 V on at least two phases. Current alone (from primary

Enter Button-Selects an option from a list or enters the set values

Figure 21 - Graphic **Display Screen**

Bar Graph Display and Menus

Figure 22 - Menus

The MicroLogic P trip unit has a default bar graph display of currents and three different menus which can be accessed using navigation buttons:

А	Bar Graph Display—Provides real-time bar graph display of line currents and measurement of line current and neutral current (if applicable) (default display)
В	Metering Menu—Provides access to metered values of current, voltage, power, energy and frequency
С	Maintenance Menu—Allows user to change the trip unit configuration and provides access to history logs
D	Protection Menu—Allows precision adjustments to basic and advanced protection

When the switch cover is closed, the trip unit will return to the bar graph (default) display after 3.5 minutes of no input. (If the switch cover is open, the display stays at the window selected.) To access another menu, press the button that corresponds to the desired menu. The menu appears on the display and the green LED below the menu button lights up.

Metering Menu

Use the metering button to access the metered values of:

- A Current
- B Voltage
- C Power
- D Energy
- E Frequency

Figure 23 - Metering Menu

Current

Figure 24 - Current Levels

Voltage

Figure 25 - Voltage Levels

Power

Figure 26 - Power Levels

Energy

Figure 27 - Energy Levels

Frequency

Displays frequency (F)

Maintenance Menu

Use the maintenance button to access the maintenance menu.

F

- A To access the history log
- B To set up the M2C/M6C contacts
- C To set up the MicroLogic trip unit

- D To set up the metering parameters
- E To set up the communication module

Figure 29 - Maintenance Menu

History Logs

M2C/M6C Programmable Contacts

- Available only if M2C/M6C contacts are installed.
- One alarm per contact.
- Can select those set up as "alarm" or "trip" under protection menu.

MicroLogic Setup

Figure 32 - MicroLogic Setup

NOTE: If trip unit is connected to a communication network which provides date and time synchronization, date/time cannot be set from trip unit.

Metering Setup

Figure 33 - Metering Setup

Communication Setup

Use the metering button to access the metered values of:

- A Current
- B Voltage
- C Power
- D Energy
- E Frequency

Figure 34 - Metering Menu

Protection Menu

Use the protection button to access the menus.

- A To display and adjust current protection
- B To display and adjust voltage protection
- C To display and adjust other protection
- D To set current load shedding
- E To set power load shedding

Figure 35 - Protection Menu

Amperage Protection

Figure 36 - Amperage Protection

Voltage Protection

Figure 37 - Voltage Protection

Other Protection

Figure 38 - Other Protection

Current Load Shedding

Figure 39 - Current Load Shedding

Power Load Shedding

Figure 40 - Power Load Shedding

Trip Unit Configuration

Trip Unit Parameters Adjustment

NOTE: The protection menu settings cannot be adjusted unless the switch cover is open. When settings have been adjusted, press one of the menus buttons to save the new values.

- 1. Open switch cover (A).
- 2. Press maintenance button (B) to bring up maintenance menu (C).

Figure 41 - Maintenance Menu

M2C/M6C Programmable Contacts

If M2C or M6C contact kit is installed, use "Contacts M2C/M6C" menu to set alarm type and operational mode. The M2C kit has S1 and S2 contacts. The M6C kit has S1, S2, S3, S4, S5 and S6 contacts.

1. Enter M2C/M6C contacts alarm type into trip unit memory. Available alarms are:

Long-time pickup lr Instantaneous pickup li lsd Short-time pickup Ground-fault current **|**≰ Ground-fault alarm Al≴ lunbal Current unbalanced Phase A demand overcurrent lamax Phase B demand overcurrent Ibmax Icmax Phase C demand overcurrent Inmax Neutral demand overcurrent Voltage is below set minimum Vmin Vmax Voltage is above set maximum Vunbal Voltage unbalanced rPmax Reversed power Fmin Frequency is below set minimum Frequency is above set maximum Fmax ΦF rot Phase rotation Current shedding Ished Pshed Power shedding Not

No alarms selected

Selected

Contacts Alarm S1 M2C / M6C type Alarm li lsd S1 type S2 Setup Reset Enter Enter Enter 4 Ŧ Alarm S2 type Do you want S1 Not to save new selected settings? S2 No Yes Enter **T** Down $\overline{\mathbf{v}}$ Down ÷ Enter Enter

🧭 Exit

Yes

Down Enter

S1

Figure 43 - Set M2C/M6C Contact Alarm Type

- 2. Set up M2C/M6C contact alarm mode. Contact modes available are:
 - Latching contact—Stays latched until reset
 - Nonlatching contact—Drops out after fault is removed.
 - Time Delay—Delay placed on contacts

For troubleshooting purposes only the following modes are available:

- Locked 0—Contacts are locked open
- Locked 1—Contacts are locked closed

For short-time, instantaneous and ground fault (SIG) alarms only:

- Each alarm occurrence will activate the relay and will signal and continue to signal an alarm until the trip unit test/reset button is pressed.
- This "latching behavior occurs regardless of whether "latching" or "nonlatching" contact mode was used during alarm setup.
- 3. Reset displays states of relays and allows them to be reset.

NOTE: Select reset option under the M2C/M6C menu to reset all alarms. The test/reset button on the trip unit will reset the trip unit so that it will stop activating the alarm, but does not reset the M2C/M6C contact.

48049-137-06EN

MicroLogic Trip Unit Setup

Use "MicroLogic setup" menu to set display language, date and time, circuit breaker information, power sign, VT ratio and system frequency.

Figure 45 - MicroLogic Trip Unit Setup

1. Set display language.

Figure 46 - Set Language

2. Set trip unit date and time.

NOTE: If trip unit is connected to a communication network which provides date and time synchronization, date/time cannot be set from trip unit. If trip unit is not connected to a communication network which provides data and time synchronization, date and time will need to be re-entered every time trip unit power is lost.)

NOTE: In US English the date format is month/ day/year. In all other languages the date format is day/month/year.

After using the test kit to do secondary injection testing, thermal imaging inhibit, ZSI testing or ground-fault inhibit, the time will need to be reset if the trip unit is not connected to a communication network providing date and time synchronization.

NOTE: If time is not synchronized by a supervisor using the network system management software, reset time semi-annually, or more often if needed.

Figure 47 - Set Date and Time

3. Enter circuit breaker information into trip unit memory. The following information must be entered to properly identify the circuit breaker over the communication network:

Standard—ANSI, UL, IEC or IEC/GB

Circuit Breaker Family—MasterPact (ANSI, UL, IEC or IEC/GB), PowerPact (UL or IEC) or ComPact NS (IEC)

Circuit Breaker Type—Found on the circuit breaker faceplate

Circuit Breaker Contact Wear Code–Only modified when replacing an existing trip unit with contact wear information

NOTE: The contact wear meter is active only when circuit breaker type is MasterPact.

To maintain contact wear indicator information when replacing an existing trip unit:

- a. Read code on trip unit to be replaced. (The code is a hexadecimal number.)
- b. Remove old trip unit and install new trip unit in circuit breaker.
- c. Enter code from old trip unit in new trip unit.

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

Change default passwords at first use to help prevent unauthorized access to device settings, controls and information.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

4. Select power sign.

Choose the signing convention to be used for power metering, energy metering and load shedding:

- P+: Power absorbed from upstream to downstream (top fed)
- P-: Power absorbed from downstream to upstream (bottom fed)

Default value is P+

5. Enter VT ratio of external voltage transformer into trip unit memory. If no external voltage transformer is present, set both primary value and secondary value to 690 V.

If supply voltage for the trip unit exceeds 690 V, an external voltage transformer is required.

Figure 49 - Set Power Sign

Figure 50 - Set VT Ratio

6. Enter system frequency into trip unit memory.

NOTE: When system frequency is set to 400 Hz:

- Reactive power absolute value will be correct, but sign will be wrong.
- PF absolute value will be correct, but sign will be wrong.
- Frequency value may not be accurate.
- · Frequency protection is disabled.
- Phase rotation protection is disabled.

Figure 51 - Set System Frequency

Metering Setup

Use "Metering setup" menu to set parameters for metering system current and power.

Figure 52 - Metering Setup

1. Select system type.

Three measurement options are available:

Network Type	Neutral	Phase Current
3-phase, 3-wire, 3 CT (Uses 2 wattmeters)	No	I_a , I_b and I_c measured
3-phase, 4-wire, 4 CT ⁹ (Uses 3 wattmeters)	Yes	I_a , I_b , I_c and I_n measured
3-phase, 4-wire, 3 CT (Uses 3 wattmeters)	No	I_a , I_b and I_c measured

NOTE: In the case of a four-pole circuit breaker, the ability to set the neutral is limited by the setting of the neutral type switch on the circuit breaker.

 I_n measurement is not available for "3phase, 4-wire, 3 CT" network types and V_{an} , V_{bn} and V_{cn} simple voltage measurements are not available for "3phase, 3-wire, 3 CT" network types.

If these measurements are desired, and if the connected system is a wye (4-wire) system, select "3-phase, 4-wire, 4 CT' and connect to neutral (V_n) voltage terminal on the neutral CT.

Figure 53 - Set System Type

^{9.} Do not use "3-phase, 4-wire, 4 CT" type unless neutral is effectively connected to the trip device (neutral voltage connection is external to the 3-pole circuit breaker). (See neutral CT instruction bulletin.)

2. Set current calculation method and interval.

The calculation method can be block interval or thermal calculation.

The window type is factory set as a sliding window.

The time interval can be set from five to 60 minutes in one minute increments.

Figure 54 - Set Current Demand

3. Set power calculation method and interval.

The calculation method can be block interval, thermal calculation or sync. to comms.

NOTE: The sync to comms method is available only with the communication option. This function determines demand power based on a signal from the communication module.

The default window type is sliding.

The time interval can be set from five to 60 minutes in one minute increments.

Figure 55 - Set Power Demand

4. Select sign convention.

Choose the signing convention to be used for reactive power (VARS) and reactive energy (VARhrs) and power factor measurements:

IEEE

IEC

IEEE alt

Figure 56 - Set Sign Convention

IEC Sign Convention

Reactive Power		
Quadrant 2 Watts Negative (-) VARs Positive (+) PF Leading (-)	Quadrant 1 Watts Positive (+) VARs Positive (+) PF Lagging (+)	
Quadrant 3 Watts Negative (-) VARs Negative (-) PF Lagging (-)	Quadrant 4 Watts Positive (+) VARs Negative (-) PF Leading (+)	Power

IEEE Alt Sign Convention

Reactive Power		
Quadrant 2	Quadrant 1	
Watts Negative (-) VARs Negative (-) PF Leading (+)	Watts Positive (+) VARs Negative (-) PF Lagging (-)	
Reverse Power Flow	Normal Power Flow-	
Quadrant 3 Watts Negative (-) VARs Positive (+) PF Lagging (-)	Power Quadrant 4 Watts Positive (+) VARs Positive (+) PF Leading (+)	

Communication Module Setup

Use "Com. setup" menu to set communication module setup.

NOTE: Com. setup parameters can only be entered if a circuit breaker communication module (BCM) is installed.

Figure 57 - Communication Module Setup

1. Set communication parameters. Default values are:

Address = 47

Baud-rate = 19.2k

Parity = even

AWARNING

POTENTIAL COMPROMISE OF SYSTEM AVAILABILITY, INTEGRITY, AND CONFIDENTIALITY

Change default passwords at first use to help prevent unauthorized access to device settings, controls and information.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

2. Remote access.

Remote access is factory set and does not require adjustment.

NOTE: Remote access setting can be changed to allow protection settings to be changed via the communication network. Contact the local sales office about the availability of software to utilize this feature.

Figure 59 - Check Remote Access

3. Set remote control.

Manual: The circuit breaker cannot be opened or closed via the network system management software.

Auto: The circuit breaker can be opened or closed via the network system management software.

NOTE: For remote operation of the circuit breaker, the BCM must be set to enable opening and/or closing and circuit breaker must have communicating shunt coils with wire harness installed.

Figure 60 - Set Remote Control

Switch Settings Adjustment

NOTICE

HAZARD OF EQUIPMENT DAMAGE

- Using the switches to set trip unit values will override settings made using the keypad.
- Changing the switch setting for overload, short-time or instantaneous, or changing the neutral protection selector on a four-pole circuit breaker, will delete all fine adjustments previously made using the keypad for overload, short-time and instantaneous protection.
- Changing the switch setting for ground-fault will delete all fine adjustments made with the keypad for ground-fault protection.
- If cover pin located on back of the protective cover is missing, contact sales office for a replacement cover.

Failure to follow these instructions can result in equipment damage.

- 1. Open switch cover (A).
- 2. Confirm that cover pin (B) is on back of the protective cover. This pin is necessary to lock trip unit settings when they are set to trip.
- Adjust the appropriate switches (C) to desired values. Display screen (D) automatically shows appropriate setting curve (E). The set value is displayed as a boxed value in amperes or seconds.

4. Make fine adjustments using navigation keys (F) or network system management software. All fine adjustments are stored in non-volatile memory.

NOTE: Fine adjustments can only be made for values less than those set with the switches. Using switches to set values after making fine adjustments using the keypad will override the keypad adjustments.

Fine switch settings are in the following increments:

Long-time pickup = 1 A

Long-time delay = 0.5 sec.

Short-time pickup = 10 A

Short-time delay = 0.1 sec.

Instantaneous pickup = 10 A

Ground-fault pickup = 1 A

Ground-fault delay = 0.1 sec.

Figure 61 - Adjust Switch Settings

5. Replace switch cover. Use a lead seal (A), not supplied, to provide tamper evidence if necessary.

NOTE: When the cover is closed, the navigation keys can no longer be used to make adjustments to the trip unit settings if they are set to trip.

6. Check settings using keypad (B) and graphic display or the network system management software.

Figure 62 - Check Switch Settings

Examples

MicroLogic 5.0P Trip Unit

- 1. Set switches:
 - A-Long-time pickup (Ir)
 - B-Long-time delay (tr)
 - C—Short-time pickup (Isd)
 - D-Short-time delay (tsd)
 - E-Instantaneous pickup (li)
- 2. Fine-tune adjust using keypad and graphic display screen or the network system management software.

Figure 63 - Set Pickup Levels

MicroLogic 6.0P Trip Unit

- 1. Set switches:
 - A—Long-time pickup (Ir)
 - B-Long-time delay (tr)
 - C—Short-time pickup (Isd)
 - D—Short-time delay (tsd)
 - E-Instantaneous pickup (li)
 - F—Ground-fault pickup (Ig)
 - G-Ground-fault delay (tg)
- 2. Fine-tune adjust using keypad and graphic display screen or the network system management software.

Figure 64 - Set Pickup Levels

Zone-Selective Interlocking (ZSI)

The number of devices which can be interlocked are shown in Zone-Selective Interlocking (ZSI), page 54.

Table 11 - ZSI Combinations

	Upstream Device (receives input from RIM) $ ightarrow$					
Downstream Device (sends output to RIM)	MicroLogic #.0x Trip Units	Square D MicroLogic Series B Trip Units	Square D GC-100 Ground-Fault Relay for Equipment Protection	Square D GC-200 Ground-Fault Relay for Equipment Protection	Merlin Gerin STR58 Trip Units	Federal Pioneer USRC and USRCM Trip Units
MicroLogic #.0x Trip Units	15	R	R	15	15	R
Square D MicroLogic Series B Trip Units	R	26	R	R	R	15
Square D GC-100 Ground-Fault Relay for Equipment Protection	R	R	7	R	R	R
Square D GC-200 Ground-Fault Relay for Equipment Protection	15	R	R	15	15	R
Merlin Gerin STR58 Trip Units	15	R	R	15	15	R
Merlin Gerin STR53 Trip Units	15	R	R	15	15	R
Federal Pioneer USRC and USRCM Trip Units	R	15	R	R	R	15
Square D Add-On Ground Fault Module for Equipment Protection	R	5	R	R	R	R

Wire circuit breakers for zone-selective interlocking.

Figure 65 -Jumpered Terminals

Auxiliary Connections

Circuit breaker terminals are shipped with terminals Z3, Z4 and Z5 jumpered to selfrestrain the short-time and ground-fault functions. Remove the jumpers when activating zone-selective interlocking.

NOTE: Use I²t off with ZSI for proper coordination. Using I²t on with ZSI is not recommended as the delay in the upstream device receiving a restraint signal could result in the trip unit tripping in a time shorter than the published trip curve.

Figure 66 - ZSI Wiring Example

Trip Unit Operation Verification

Use a test kit connected to the trip unit test plug receptacle (A) to verify trip unit is functioning as desired. See instructions shipped with test kit to perform verification tests.

NOTE: To verify operation of the circuit breaker and trip unit, use primary injection testing. (See Trip Unit Installation Check, page 80 for more information.)

Figure 67 - Verify Trip Unit Operation

Trip Unit Resetting

When the circuit breaker trips, the fault indicator will remain lit until the trip unit is reset.

Do not return circuit breaker to service until cause of trip is determined. For more information, refer to the circuit breaker installation instructions shipped with the circuit breaker.

Figure 68 - Reset

Trip Unit

Press the reset/test button (A) to reset the trip unit after trip.

Equipment Ground-Fault Trip Functions Testing

Figure 69 - Test Equipment Ground-Fault Trip Function

Paragraph 230-95 (c) of the National Electrical Code requires that all equipment ground-fault protection systems be tested when first installed.

With the trip unit powered and the circuit breaker closed, test the equipment ground-fault (MicroLogic 6.0P trip unit) trip function.

The trip unit is powered if:

- circuit breaker is on and has more than 150 V of load voltage on two phases (circuit breaker is closed or bottom fed).
- the test kit is connected and on.
- the 24 Vdc external power supply is connected.
- an external voltage tap is installed and voltage of more than 150 V is present on two phases.

For instructions on how to close circuit breaker, refer to the circuit breaker installation instructions shipped with the circuit breaker.

To test trip function, press the ground-fault test button (A). Circuit breaker should trip.

If circuit breaker does not trip, contact the local field office.

Trip Unit Status Check

Check trip unit battery and trip indicators.

- 1. Make sure trip unit is powered. The trip unit is powered if:
 - circuit breaker is on and has more than 150 V of load voltage on two phases (circuit breaker is closed or bottom fed).
 - the test kit is connected and on.
 - the 24 Vdc external power supply is connected.
 - the external voltage tap is installed and voltage of more than 150 V is present on two phases.
- 2. Press test/reset button (A).
 - All trip indicators (B) will light up
 - · Battery status will be displayed
 - The battery bar graph reading is valid after the reset button has been released

- 3. If the battery bar graph shows the battery needs to be changed, use Square D battery catalog number S33593:
 - lithium battery
 - 1.2AA, 3.6 V, 800 ma/h

For instructions on replacing battery, see Battery Replacement, page 84.

Operation

Metered Values

Use the metering menus to monitor circuit breaker current (I), voltage (V), power (P), energy (E) and frequency (F).

NOTE: System measurements can also be checked remotely using System Manager Software (SMS) (version 3.3 or later) or other network system management software.

Figure 71 - Metering Menu

Current Levels

la	Instantaneous A phase current
lb	Instantaneous B phase current
lc	Instantaneous C phase current
l _n	Instantaneous neutral current
<u>≠</u>	Instantaneous ground current
l _a max	Maximum instantaneous A phase current
l₅max	Maximum instantaneous B phase current
l _c max	Maximum instantaneous C phase current
l _n max	Maximum instantaneous neutral current
l <i>≛</i> max	Maximum instantaneous ground current
la	Voltage is above set maximum
Īb	Demand B phase current
Īc	Demand C phase current
Īn	Demand neutral current
la max	Maximum demand A phase current
lb max	Maximum demand B phase current
Ic max	Maximum demand C phase current
In max	Maximum demand neutral current

Maximum measurements can also be reset to zero.

Figure 72 - Check Current Levels

Voltage Levels

Vab	Instantaneous voltage between A and B phases
Vbc	Instantaneous voltage between B and C phases
Vca	Instantaneous voltage between C and A phases
Van	Instantaneous voltage between A phase and neutral
Vbn	Instantaneous voltage between B phase and neutral
Vcn	Instantaneous voltage between C phase and neutral

Figure 73 - Check Voltage Levels

Power Levels

Р	Instantaneous active power	
Q	Instantaneous reactive power	
S	Instantaneous apparent power	
Power Factor	Instantaneous power factor	
P	Demand active power	
Q	Demand reactive power	
S	Demand apparent power	
Pmax	Maximum demand active power	
Qmax	Maximum demand reactive power	
Smax	Maximum demand apparent power	

Maximum measurements can also be reset to zero.

NOTE: To ensure reliable power and power factor measurements, Set Power Sign, page 44, and Set Sign Convention, page 47.

Figure 74 - Check Power Levels

.1.

Energy Levels

Total active energy (P)

Total reactive energy (Q)

Total apparent energy (S)

Active energy in (E.P.)

Reactive energy in (E.Q.)

Active energy out (E.P.)

Reactive energy out (E.Q.)

Energy measurements can also be reset to zero.

NOTE: To ensure reliable energy measurements, Set Power Sign, page 44, and Set Sign Convention, page 47.

Figure 75 - Check Energy Levels

Frequency

Figure 76 - Check Frequency

Trip Unit History

Use the maintenance menu to review the trip unit history stored in the history logs.

Figure 77 - History Log Menu

Trip History

The trip unit stores information about the LSIG fault causing the last ten trips. For each fault the following are stored:

- Current values of Ir, Isd, Ii, and Ig
- Pickup setpoint for voltage and other protection
- Date
- Time (hour, minute and second)

NOTE: Trips from use of a test kit are not recorded in the trip history log.

Figure 78 - Check Trip History

Alarm History

The trip unit records measurement at each of the last ten alarms activated. For each alarm the following are stored:

- Indication and value of the alarm setting
- Date
- Time (hour, minute and second)

Figure 79 - Check Alarm History

Operation Counter

This displays the maximum number of operations (trip or circuit breaker openings) since the circuit breaker was installed. The number is obtained from the circuit breaker communication module (BCM).

Contact Wear

This displays the amount of contact wear on the contact with the greatest wear. When this number reaches 100, it is recommended that a visual inspection of the contacts be done. This function works only on MasterPact® NT and NW circuit breakers.

Figure 81 - Check Contact Wear

Protection Setup

Use the protection menus to check protection setup for amperage protection, voltage protection, other protection, current load shedding and power load shedding.

Refer to Appendix B for default settings and setting ranges.

Figure 82 - Protection Menu

Amperage Protection

The "Change Idmtl (A) setting with I(A)" screen will only appear if long-time, short-time and/or instantaneous adjustments have been previously made under the Idmtl (A) menu screen. If the user responds Yes, the Idmtl (A) settings will be lost when the menu goes to the I(A) adjustment screen. If no adjustments have been made under the Idmtl (A) menu screen, the menu goes directly to the I(A) adjustment screen.

The "Change I (A) setting with Idmtl(A)" screen will only appear if long-time, short-time and/or instantaneous adjustments have been previously made under the I(A) menu screen. If the user responds Yes, the I(A) settings will be lost when the menu goes to the Idmtl(A) adjustment screen. If no adjustments have been made under the Idmtl(A) menu screen, the menu goes directly to the I(A) adjustment screen.

NOTE: Neutral protection is disabled if Idmtl protection is selected.

Figure 84 - Check Amperage Protection

Circuit Breaker	Neutral CT Type	Protection Choices
All	none	disabled
Four-pole		OFF: no neutral protection
	internal	N/2: half neutral protection
		N: full neutral protection
Three-pole		OFF: no neutral protection
	external	N/2: half neutral protection
		N: full neutral protection
		1.6N: oversized neutral protection

Figure 85 - Check Amperage Protection

×

NOTE: To set Inmax, the neutral CT must be set to external or internal under MicroLogic setup under the maintenance menu.

Voltage Protection

NOTICE

HAZARD OF EQUIPMENT DAMAGE

Setting undervoltage protection (Vmin) below 80% or voltage unbalance (Vunbal) above 20% can cause the trip unit to not perform as expected.

Failure to follow these instructions can result in equipment damage.

Voltage protection pickup settings are phase-to-phase values.

Unbalance values are based on the true RMS values of the three-phase currents.

Undervoltage alarm drops out upon the loss of the second phase.

NOTE: Do not set undervoltage protection below 80%. Do not set Vunbal above $20\%^{10}$

Figure 86 - Check Voltage Protection

^{10.} For an explanation of system protection behavior, refer to Appendix D

Other Protection

Amperage protection rP_{max} (W) rP_{max} (W) βα, Off Voltage protection F_{min} (Hz) Pick up Other F_{max} (Hz) 500kW protection 5.00s Phase rotation Load shedding Drop out L 500kW Load shedding 1.0s Ρ Enter Enter 📐 Exit F_{min} (Hz) rP_{max} (W) Off F_{min} (Hz) Pick up F_{max} (Hz) 45.0Hz 5.00s Phase rotation Drop out 45.0Hz 1.00s 🕒 Exit Down Enter 9 F_{max} (Hz) rP_{max} (W) Off F_{min} (Hz) Pick up 65.0Hz F_{max} (Hz) 5.00s Phase rotation Drop out 65.0Hz 1.00s 📐 Exit **Down** Enter Phase rotation rP_{max} (W) Off F_{min} (Hz) : A, B, C F_{max} (Hz) Phase rotation 🕒 Exit Down Enter 🕒 Exit

Figure 87 - Check Other Protection
Current Load Shedding

Current load shedding can be configured for alarm only. It cannot be used to trip the circuit breaker.

Figure 88 - Check Current Load Shedding

Power Load Shedding

Power load shedding can be configured for alarm only. It cannot be used to trip the circuit breaker.

NOTE: Press Protection button to view Protection Menu.

Figure 89 - Check Power Load Shedding

Trip Unit Replacement

Trip unit replacement must be done by qualified persons, as defined by the National Electric Code, who are familiar with the installation and maintenance of power circuit breakers.

Before replacing trip unit, confirm that the circuit breaker is in good working condition. If the condition of the circuit breaker is unknown, do not proceed. For assistance in evaluating the condition of the circuit breaker, call Technical Support.

Read this entire section before starting the replacement procedure.

If trip unit being replaced is a MicroLogic 2.0, 3.0 or 5.0 trip unit, order connector block S33101 and circuit breaker or cradle wiring harness if necessary.

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Failure to follow these instructions for installation, trip test and primary injection testing may result in the failure of some or all protective function.
- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462, NOM 029-STPS or local equivalent.
- Replacement/upgrading of a trip unit in the field must be done by qualified persons, as defined by the National Electric Code, who are familiar with the installation and maintenance of power circuit breakers.
- Before replacing/upgrading trip unit, confirm that the circuit breaker is in good working condition. If the condition of the circuit breaker is unknown, do not proceed. For assistance in evaluating the condition of the circuit breaker, call Technical Support.
- If the circuit breaker fails to function properly in any manner upon completion of the trip unit installation, immediately remove the circuit breaker from service and call Field Services.
- Turn off all power supplying this equipment before working on or inside equipment. Follow instructions shipped with circuit breaker to disconnect and reconnect circuit breaker.
- Replace all devices, doors and covers before returning equipment to service.

Failure to follow these instructions will result in death or serious injury.

Required Tools

- Torque-controlled screwdriver, set at 7 in-lbs (0.8 N•m) ± 10% (Lindstrom torque driver MAL500-2 or equivalent)
- The appropriate MicroLogic test kit found in Section 7 of The Digest (Reference 0100CT1901).¹¹

^{11.} See test kit user guide for compatibility and test function coverage.

Preparation

Record Switch Settings

Record all trip unit switch and advanced protection settings for later use.

Circuit Breaker Disconnection

Disconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker. The circuit breaker must be completely isolated. (For a drawout circuit breaker, place circuit breaker in the disconnected position. For a fixed-mounted circuit breaker, all voltage sources, including auxiliary power, must be disconnected.)

Circuit Breaker Accessory Cover Removal

Remove circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Rating Plug Removal

A small Phillips screwdriver is needed to remove the adjustable rating plug.

- Open switch cover (A).
- Unscrew adjustable rating plug mounting screw (B).
- Remove adjustable rating plug (C). Save for installation in replacement trip unit.

Figure 90 - Remove Adjustable Rating Plug

Trip Unit Removal

- 1. Remove connector block (A) from top of trip unit, if present.
- 2. Loosen two trip unit screws (B).
- 3. Slide out trip unit (C).

Trip Unit Replacement

Battery Installation

Figure 92 - Install

Battery

If a new trip unit is being installed, install the trip unit battery.

Install battery holder with battery (A) in trip unit, observing the correct polarity as indicated on the battery compartment.

NOTE: Battery holder with battery is located under the side flap in the cardboard box the trip unit is shipped in.

Press test/reset button (A). All four indicator lights (B) should light. If they do not light, check polarity of battery and retest. If indicator lights still do not light up when test/ reset button is pressed, stop installation and contact the local sales office for factory authorized service

Figure 93 - Trip Indicator Lights

Trip Unit Installation

- 1. Inspect trip unit connector pins and surfaces. If there is any damage, misaligned pins, or contamination, stop installation and contact the local sales office for factory authorized service.
- 2. Inspect trip unit mounting base on the circuit breaker. Clear any debris from area and check that all accessory wiring is properly routed for the trip unit being installed. If there is any damage or contamination, stop installation and contact the local sales office for factory authorized service.
- For MasterPact NW circuit breaker only: Manually depress trip unit interlock (A) and hold it in place during steps 4–6 below.

4. Align guide rail (B) on bottom of trip unit with guide rail slot (C) on trip unit mounting base in circuit breaker and gently slide the trip unit in until it stops.

NOTE: The MasterPact NT and NW trip unit mounting bases are shock mounted and therefore can flex slightly.

Figure 94 - Install Trip Unit

HAZARD OF EQUIPMENT DAMAGE

Check installation of trip unit to assure proper connections and seating.

Failure to follow these instructions can result in injury or equipment damage.

- 5. Align the trip unit so top mounting screw (A) aligns with the top threaded insert and start the screw by turning the screw two full rotations.
- Use a torque-controlled screwdriver to drive the bottom screw (B) to 7 in-lbs (0.8 N•m) ± 10%. The back of the trip unit must be flush with the trip unit mounting base.
- 7. Use a torque-controlled screwdriver to drive the top screw to 7 in-lbs $(0.8 \text{ N} \cdot \text{m}) \pm 10\%$. Mounting tab must be flush with the mounting standoff and sensor plug.

NOTE: The face of the closed switch cover must be flush with adjoining mounting base surfaces. If these surfaces are not flush, stop installation and contact the local sales office for factory authorized service.

NOTE: If you are upgrading from a MicroLogic 2.0, 3.0 or 5.0 trip unit, the connector block must be ordered separately (Part Number S33101). See instructions shipped with the connector block for installation into circuit breaker.

8. Install connector block (C) into top of trip unit.

Figure 95 - Secure Trip Unit

- 9. Install adjustable rating plug into the trip unit.
 - a. Open switch cover (A) on new trip unit.
 - b. Inspect mounting area for debris and contamination.
 - c. Gently push adjustable rating plug (B) into new trip unit.
 - d. Tighten adjustable rating plug mounting screw (C). The plug will be drawn into position flush with front face as screw is tightened.
- 10. Set trip unit switches and advanced protection settings to values recorded above or per coordination study results.
- 11. Close switch cover (A).

Figure 96 - Install Adjustable Rating Plug

Circuit Breaker Accessory Cover Replacement

Replace circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Trip Unit Installation Check

Secondary Injection Testing

Field installation of a trip unit requires secondary injection testing with an appropriate test kit. This will ensure that the newly-installed trip unit is functioning properly. The test will require opening and closing the circuit breaker. Follow the procedures outlined in the instruction bulletins shipped with the circuit breaker and the test kit.

- 1. Make sure the circuit breaker is isolated from all upstream and downstream devices.
- 2. Perform secondary injection testing as outlined in the instruction bulletin shipped with the test kit. Verify that all applicable trip unit functions are operating properly.
- 3. If any test fails, do not put the circuit breaker into service and contact the local sales office for factory authorization service.

Primary Injection Testing

Primary injection testing is recommended to ensure that all trip system connections have been correctly made. Perform primary injection testing per the instructions in the *Field Testing and Maintenance Guide*, bulletin 48049-900-xx, where xx is 02 or higher.

Check Accessory Operation

- Installed accessories Validate the proper operation of all installed accessories. See the corresponding accessory instruction bulletins for operational testing procedures.
- Programmable contact module If circuit breaker has an M2C or M6C programmable contact module installed, validate its proper operation. See the corresponding accessory instruction bulletins for operational testing procedures.
- Zone selective interlocking If the circuit breaker is part of a ZSI system, follow the zone selective interlocking test procedures as outlined in the appropriate test kit instruction bulletin.
- 4. Communications If communication modules exist, confirm circuit breaker has re-established communications with the supervisor.

Trip Unit Setup

- 1. If an auxiliary power supply is being used for the MicroLogic trip unit, reconnect the auxiliary power supply.
- 2. Reset the trip unit switches and advanced protection settings to original values, as recorded at the beginning of this section.

Circuit Breaker Reconnection

Reconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.

Adjustable Rating Plug Replacement

NOTE: To select correct replacement rating plug, see the product catalog.

NOTE: Adjustable rating plug must be removed when doing hi-pot testing. Adjustable rating plug must be installed for voltage measurement. If adjustable rating plug is removed, the circuit breaker will default to a long-time pickup rating of 0.4 x sensor size (In) and a long-time delay of whatever setting was selected before the rating plug was removed.

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462, NOM 029-STPS or local equivalent.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment. Follow instructions shipped with circuit breaker to disconnect and reconnect circuit breaker.
- · Replace all devices, doors and covers before returning equipment to service.

Failure to follow these instructions will result in death or serious injury.

Remove Rating Plug

- 1. Disconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.
- 2. Open switch cover (A).
- 3. Record switch settings in Appendix E (switch settings and those set with graphic screen, if applicable).
- 4. Unscrew plug mounting screw (B).
- 5. Remove adjustable rating plug (C).

Figure 97 - Remove Adjustable Rating Plug

Install New Rating Plug

- 1. Inspect mounting area for debris and contamination.
- 2. Gently push in new rating plug (A).
- 3. Tighten adjustable rating plug mounting screw (B).
- 4. Set trip unit settings to values recorded in Appendix E or per coordination study results.
- 5. Close switch cover (C).

Figure 98 - Install New Adjustable Rating Plug

Battery Replacement

Circuit Breaker Disconnection

Disconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.

Accessory Cover Removal

Remove circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

ADANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. See NFPA 70E, CSA Z462, NOM 029-STPS or local equivalent.
- This equipment must be installed and serviced only by qualified electrical personnel.
- Turn off all power supplying this equipment before working on or inside equipment. Follow instructions shipped with circuit breaker to disconnect and reconnect circuit breaker.
- Replace all devices, doors and covers before returning equipment to service.
- Failure to follow these instructions will result in death or serious injury.

Withstand Module Shifting

NOTE: R-frame and NS1600b-NS3200 circuit breakers only.

Loosen screws (A) securing withstand module (B). Swing module to side to access trip unit battery cover. Do not remove withstand module connector.

Figure 99 - Shift Withstand Module

Battery Replacement

1. Insert small screwdriver blade into battery housing cover notch and rotate to slide battery housing cover (A) out of trip unit.

Figure 100 - Remove Battery Cover

- 2. Remove battery (A).
- 3. Insert new battery (B). Make sure that the polarity is correct.
- 4. Replace battery housing cover (C).

Figure 101 - Replace Battery

Withstand Module Replacement

NOTE: R-frame and NS1600b–NS3200 circuit breakers only. Replace withstand module (A). Tighten screws (B) securing withstand module.

Figure 102 - Replace Withstand Module

Accessory Cover Replacement

Replace circuit breaker accessory cover as directed in the Install Accessories section of the circuit breaker instruction bulletin shipped with the circuit breaker.

Circuit Breaker Reconnection

Reconnect circuit breaker as directed in the circuit breaker instruction bulletin shipped with the circuit breaker.

Appendix A—Graphic Display Flowcharts

Metering Menu Flowchart

Maintenance Menu Flowchart

Protection Menu Flowchart

Appendix B—Default Settings and Tolerances

Default Settings

Table 12 - Default Settings—Switches

Description	Symbol	Default Value
Long-time pickup	lr	Maximum
Long-time delay	tr	Minimum
Short-time pickup	lsd	Minimum
Short-time delay	tsd	Minimum
Ground-fault pickup	lg	Minimum
Ground-fault delay	tg	Minimum
Instantaneous	li	Minimum

Table 13 - Default Settings—Maintenance

M2C/M6C contacts Alarm type S# Not selected Not selected, Isd, Ir, Iunbal (See Trip Ul Alarms, page 22) Setup S# Latching Latching contact, time delay, non-latchin contact, Locked 0, Locked 1 Language — English US Deutsch, English US, English UK, Espanol, Francais
Ni2C/NOC contacts Setup S# Latching Latching contact, time delay, non-latching contact, Locked 0, Locked 1 Language — English US Deutsch, English US, English UK, Espanol, Francais
Language — English US Espanol, Francais
Date/Time — — —
Standard NA Not def, ANSI, IEC, UL, IEC/GB
Circuit breaker NA —
MicroLogic setup
Circuit breaker number 0 0000–FFFF
Power sign — P+ P+, P-
Primary 690 000–690
Secondary 690 000–690
System frequency — 50-60 Hz 50-60 Hz, 400 Hz
System type 3Φ 4 w 4 CT 3Φ 4 w 4 CT, 3Φ 4w 3CT, 3Φ 3w 3CT, 3Φ 3w 3CT
Current demand Interval 15 min. 5–60 min
Metering setup Window type Sliding Sliding, block
Interval 15 min. 5–60 min
Sign convention — IEEE IEEE, IEEE alt, IEC
Com parameter
Com setup Remote access — No Yes, no
Remote control — Auto Auto, manual

Table 14 - Default Settings—Protection

Submenu	Description	Symbol	Line Item	Default Value	Setting Range	Tolerance	
	Long-time pickup	lr	—	Maximum	—	±10%	
	Long-time delay	Long-time delaytrShort-time pickupIsd		Minimum	1	-20%, +0%	
	Short-time pickup			Minimum	_	±10%	
	Short-time delay	tsd	_	Minimum	_		
	Instantaneous	li	_	Minimum	_	±10%	
	Ground-fault alarm (5.0P trip unit)	ا خ	No protection	_	_	_	
			Mode	Trip	Trip	_	
	Ground-fault (6.0P trip unit)	ا <u>ځ</u>	Pickup	Switch setting	In £ 400 A: 30%–100% In 400 < In £ 1200 A: 20%– 100% In 1200 A < In: 500 A–1200 A	±10%	
			Pickup delay	Switch setting	1–40 sec.	-20%, +0%	
	Neutral current	Ineutral	-	Off	Off, N/2, N, 1.6N	_	
			Mode	Off	Alarm, off	—	
	Ground-fault alarm	I <i>≛</i> alarm	Pickup	1200 A	20 x In–1200 A	±15%	
			Pickup delay	10.0 sec.	1.0–10.0 sec.	-20%, +0%	
Amperage protection			Dropout	1200 A	20 A–pickup	±15%	
			Dropout delay	1.0 sec.	1.0–10.0 sec.	-20%, +0%	
		lunbal	Mode	Off	Alarm, trip, off	_	
			Pickup %	60%	5–60%	-10%, +0%	
	Current unbalance		Pickup delay	40 sec.	1–40 sec.	-20%, +0%	
			Dropout %	lunbal pickup %	5%–pickup %	-10%, +0%	
			Dropout delay	10 sec.	10–360 sec.	-20%, +0%	
			Mode	Off	Alarm, trip, off	_	
	Max phase A		Pickup	In	0.2 x ln– ln	±6.6%	
	demand	la max	Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%	
	current		Dropout	lamax pickup	0.2 x In–pickup	±6.6%	
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%	
			Mode	Off	Alarm, trip, off	_	
	Max, phase B		Pickup	In	0.2 x In–In	±6.6%	
	demand	Ib max	Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%	
	current		Dropout	Ibmax Pickup	0.2 x In–pickup	±6.6%	
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%	
	Max phase C		Mode	Off	Alarm, trip, off		
	demand	Ic max	Pickup	In	0.2 x In–In	±6.6%	
	current	current		Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%

Tolerance

±6.6%

-20%, +0%

_

±6.6%

Table 14 - Default Settings—Protection (Continued) Description Symbol Line Item **Default Value** Setting Range Submenu Dropout Icmax pickup 0.2 x In-pickup Dropout delay 15 sec. 15-3000 sec. Off Alarm, trip, off Mode Pickup In 0.2 x In–In Max. neutral

	demand	In max	Pickup delay	1500 sec.	15–1500 sec.	-20%, +0%
	current		Dropout	Inmax pickup	0.2 x In–pickup	±6.6%
			Dropout delay	15 sec.	15–3000 sec.	-20%, +0%
			Mode	Off	Alarm, trip, off	—
	Minimum		Pickup	100 V	100 V–Vmax pickup	-5%, +0%
	(under)	Vmin	Pickup delay	5 sec.	1.2–5 sec.	-0%, +20%
	voltage		Dropout	Vmin pickup	Vmin pickup–1200 A	-5%, +0%
			Dropout delay	1.2 sec.	1.2–36 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	—
			Pickup	725 V	Vmin–1200 A	-0%, +5%
Voltage protection	Maximum (over) voltage	Vmax	Pickup delay	5 sec.	1.2–5 sec.	-0%, +20%
			Dropout	Vmax pickup	100–Vmax pickup	-0%, +5%
			Dropout delay	1.2 sec.	1.2–36 sec.	-0%, +20%
	Voltage unbalance	Vunbal	Mode	Off	Alarm, trip, off	—
			Pickup	20%	2–20% ¹²	-10%, +0%
			Pickup delay	40 sec.	1–40 sec.	-20%, +0%
			Dropout	Vunbal pickup	2%–Vunbal pickup	-10%, +0%
			Dropout delay	10 sec.	10–360 sec.	-20%, +0%
			Mode	Off	Alarm, trip, off	—
			Pickup	500 kW	5–500kW	± 2.5%
	Reverse power		Pickup delay	20 sec.	0.2–20 sec.	-0%, +20%
			Dropout	rP pickup	5kW–rP pickup	± 2.5%
			Dropout delay	1 sec.	1–360 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	—
	Minimum		Pickup	45 Hz	45 Hz–Fmax pickup	± 0.5 Hz
Other protection	(under)	Fmin	Pickup delay	5 sec.	0.2–5 sec.	-0%, +20%
	irequeitcy		Dropout	Fmin pickup	Fmin Pickup–440 Hz	± 0.5 Hz
			Dropout delay	1 sec.	1–36 sec.	-0%, +20%
			Mode	Off	Alarm, trip, off	—
	Maximum		Pickup	65 Hz	Fmin Pickup–440 Hz	± 0.5 Hz
	(over)	Fmax	Pickup delay	5 sec.	0.2–5 sec.	-0%, +20%
	nequency		Dropout	Fmax pickup	45 Hz–Fmax pickup	± 0.5 Hz
			Dropout delay	1 sec.	1–36 sec.	-0%, +20%

12. Do not adjust above 20%.

Table 14 - Default Settings—Protection ((Continued))
	(Continuou)	

Submenu	Description	Symbol	Line Item	Default Value	Setting Range	Tolerance
Phase rotation	Phase rotation	se rotation —	Sequence	Phase A, phase C, phase B direction	Phase A, phase B, phase C direction or phase A, phase C, phase B direction	_
			Mode	Off	Off, alarm	—
			Mode	Off	Off, on	—
		. –	Pickup %	100% Ir	50% lr–100% lr	±6%
Load shedding I	Load shedding I		Pickup delay %	80% tr	20–80% tr	-20%, +0%
			Dropout %	Load shedding I pickup	30%–Load shedding I pickup %	±6%
			Dropout delay	10 sec.	10–600 sec.	-20%, +0%
			Mode	Off	Off, On	—
Load shedding P	Load shedding P	Load shedding P	Pickup	10,000 kW	200–10,000 kW	± 2.5%
			Pickup delay	3600 sec.	10–3600 sec.	-20%, +0%
			Dropout	Load shedding P pickup	100 kW–Load shedding P pickup %	± 2.5%
			Dropout delay	10 sec.	10–3600 sec.	-20%, +0%

Metering Range and Accuracy

Table 15 - Metering Range and Accuracy

Item	Description	Symbol	Range	Tolerance
	Instantaneous current in A phase	la	0–32 kA	±1.5%
	Instantaneous current in B phase	lb	0–32 kA	±1.5%
	Instantaneous current in C phase	lc	0–32 kA	±1.5%
	Instantaneous current in neutral	ln	0–32 kA	±1.5%
Instantaneous	Instantaneous current in ground	<u>‡</u>	0–32 kA	±1.5%
Current	Max. instantaneous current in A phase	l _a max	0–32 kA	±1.5%
	Max. instantaneous current in B phase	l₅max	0–32 kA	±1.5%
	Max. instantaneous current in C phase	l₀max	0–32 kA	±1.5%
	Max. instantaneous current in neutral	I _n max	0–32 kA	±1.5%
	Max. instantaneous current in ground	I <i>≰</i> max	0–32 kA	±1.5%
	Demand current in A phase	la	0–32 kA	±1.5%
	Demand current in B phase	Īb	0–32 kA	±1.5%
	Demand current in C phase	Īc	0–32 kA	±1.5%
Demand Current	Demand current in neutral	In	0–32 kA	±1.5%
	Max. demand current in A phase	la max	0–32 kA	±1.5%
	Max. demand current in B phase	lb max	0–32 kA	±1.5%
	Max. demand current in C phase	lc max	0–32 kA	±1.5%
	Max. demand current in neutral	In max	0–32 kA	±1.5%
	Phase-to-phase instantaneous voltage between A and B phase	V_{ab}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between B and C phase	V _{bc}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between C and A phase	V _{ca}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between A and neutral phase	V _{an}	0–1200 V	±0.5%
Voltage	Phase-to-phase instantaneous voltage between B and neutral phase	V _{bn}	0–1200 V	±0.5%
	Phase-to-phase instantaneous voltage between C and neutral phase	V _{cn}	0–1200 V	±0.5%
	Average phase-to-phase voltage	Vavg 3Φ	0–1200 V	±0.5%
	Voltage unbalance	V unbal 3Φ	0–100 V	±0.5%
	Instantaneous active power	Р	0–32 MW	±2%
Instantaneous Power	Instantaneous reactive power	Q	0–32 Mvar	±2%
	Instantaneous apparent power	S	0–32 MVA	±2%

ltem	Description	Symbol	Range	Tolerance
Power Factor	Power factor	PF	-1–1	±0.01%
	Active demand power	Р	0–32 MW	±2%
	Reactive demand power	Q	0–32 Mvar	±2%
	Apparent demand power	S	0–32 MVA	±2%
Demand Power	Max. active demand power since last reset	Pmax	0–32 MW	±2%
	Max. reactive demand power since last reset	Qmax	0–32 Mvar	±2%
	Max. apparent demand power since last reset	Smax	0–32 MVA	±2%
	Total active power	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
Energy Total	Total reactive power	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
	Total apparent power	E. S	-10 ¹⁰ –10 ¹⁰ KVAh	±2%
Enorgy In	Total active power in	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
	Total reactive power in	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
	Total active power out	E. P	-10 ¹⁰ –10 ¹⁰ Kwh	±2%
	Total reactive power out	E. Q	-10 ¹⁰ –10 ¹⁰ Kvarh	±2%
Frequency	System frequency	F	45–440 Hz	±0.1 Hz

Table 15 - Metering Range and Accuracy (Continued)

Appendix C—Network/Com Access

Remotely Readable Values

The communication option can be used to remotely access the MicroLogic trip unit, using System Manager Software (SMS) (version 3.3 or later) or other network system management software. See the product catalog for more information on the SMS software.

Table 16 - Remotely Readable Values

Item	Description	Symbol
	Instantaneous current in A phase	la
	Instantaneous current in B phase	I _b
	Instantaneous current in C phase	l _c
	Instantaneous current in neutral	I _n
	Instantaneous current in ground	<u>≠</u>
	Average instantaneous current in A phase	l _a avg
	Average instantaneous current in B phase	l₀avg
	Average instantaneous current in C phase	l₀avg
	Average instantaneous current in neutral	I _n avg
	Average instantaneous current in ground	l <i>≛</i> avg
	Maximum instantaneous current in A phase	l _a max
	Maximum instantaneous current in B phase	I _b max
Current	Maximum instantaneous current in C phase	l₀max
	Maximum instantaneous current in neutral	Inmax
	Maximum instantaneous current in ground	l <i>≛</i> max
	Instantaneous current unbalance in A phase	l _a unbal
	Instantaneous current unbalance in B phase	l₅unbal
	Instantaneous current unbalance in C phase	l₀unbal
	Instantaneous current unbalance in neutral	l _n unbal
	Instantaneous current unbalance in ground	l <i>≰</i> unbal
	Max. instantaneous current unbalance in A phase	l _a unbal max
	Max. instantaneous current unbalance in B phase	l₀unbal max
	Max. instantaneous current unbalance in C phase	l₀unbal max
	Max. instantaneous current unbalance in neutral	l _n unbal max
	Max. instantaneous current unbalance in ground	l <i>≛</i> unbalmax

Table 16 - Remotely Readable Values (Continued)

ltem	Description	Symbol
	Demand current in A phase	la
	Demand current in B phase	lb
	Demand current in C phase	lc
	Demand current in neutral	In
	Max. demand current since last reset in A phase	l _a max
	Max. demand current since last reset in B phase	l₅max
Demand Currents	Max. demand current since last reset in C phase	l _c max
	Max. demand current since last reset in neutral	Inmax
	Recommended demand current in A phase	
	Recommended demand current in B phase	
	Recommended demand current in C phase	
	Recommended demand current in neutral	
	Time stamping of demand current max.	
	Instantaneous voltage between A and B phase	V inst V _{ab}
	Instantaneous voltage between B and C phase	V inst V _{bc}
	Instantaneous voltage between C and A phase	V inst V _{ca}
	Instantaneous voltage between A and neutral phase	V inst V _{an}
	Instantaneous voltage between B and neutral phase	V inst V _{bn}
	Instantaneous voltage between C and neutral phase	V inst V _{cn}
	Average phase-to-phase voltage between A and B phase	$V avg V_{ab}$
	Average phase-to-phase voltage between B and C phase	V avg V_{bc}
	Average phase-to-phase voltage between C and A phase	V avg V $_{ca}$
	Average phase-to-phase voltage between A phase and neutral	V avg V _{an}
	Average phase-to-phase voltage between B phase and neutral	V avg V _{bn}
Valtaria	Average phase-to-phase voltage between C phase and neutral	V avg V _{cn}
voltage	Voltage unbalance between V _{ab} and mean	V unbal V_{ab}
	Voltage unbalance between V_{bc} and mean	V unbal V_{bc}
	Voltage unbalance between V_{ca} and mean	V unbal V _{ca}
	Voltage unbalance between V _{an} and mean	V unbal V _{an}
	Voltage unbalance between V_{bn} and mean	V unbal V _{bn}
	Voltage unbalance between V _{cn} and mean	V unbal V _{cn}
	Max. voltage unbalance between V _{ab} and mean	
	Max. voltage unbalance between V_{bc} and mean	
	Max. voltage unbalance between V _{ca} and mean	
	Max. voltage unbalance between V _{an} and mean	
	Max. voltage unbalance between V _{bn} and mean	
	Max. voltage unbalance between V _{cn} and mean	
Active Power	Instantaneous active power per phase	Р

Table 16 - Remotely Readable Values (Continued)

Item	Description	Symbol
	Active demand power	Р
	Reactive demand power	Q
	Apparent demand power	S
	Max. active demand power since last reset	Pmax
Demand Power	Max. reactive demand power since last reset	Qmax
	Max. apparent demand power since last reset	Smax
	Max. predicted active demand power	
	Max. predicted reactive demand power	
	Max. predicted apparent demand power	
	Time stamping of demand power max.	
	Total active energy	E
Energy	Active energy in	
	Active energy out	
Fault values	Fault type	
	Interrupted current values	
Frequency	System frequency	F
Lindate dates	Interval between last update of real-time values and the current table	
Opuale dales	Update date of demand currents, demand power and energy	
	Trip history	
History	Alarm history	
	Event history	
	Contact wear	
Countors	Operation counter since last reset	
Counters	Date/time of last operation counter reset	
	Operation counter total (lifetime)	

Table 16 - Remotely Readable Values (Continued)

ltem	Description	Symbol
	Setting of date and time	
	Password	
	Trip unit ID code	
	Trip unit ID name	
	Measurement calculation algorithm	
	Sign convention	
	Total-energy measurement mode	
Sotup	Scale factors	
Selup	Demand-current calculation window interval	
	Power quality indication	
	Demand-power calculation mode	
	Demand-power calculation window interval	
	Battery-charge indication	
	Programmable contact assignments	
	Programmable contact setup	
	Waveform capture	
	Circuit breaker rated current	
	Type of neutral protection	
	Long-time protection settings	
	Short-time protection settings	
	Instantanaeous protection settings	
Protection	Ground-fault protection settings	
Trotoolon	Current-unbalance protection settings	
	l <i>≰</i> alarm settings	
	Maximum-current protection settings	
	Voltage protection settings	
	Other protective functions settings	

List of Registers

The quantities are listed in alphabetical order according to the SMS topic name.

NOTE: A system scan rate of 500 ms or greater is recommended to minimize communications timeout issues.

To access available registers, the following address scheme applies

Module	Module Name	Equation	Address Range
BCM	Circuit Breaker Communication Module	—	1–47
CCM	Cradle Communication Module	BCM + 50	51–97
PM	Protection Module (Internal to trip unit)	BCM + 100	101–147
MM	Meter Module (Internal to trip unit)	BCM + 200	201–247

Table 17 - List of Registers

SMS Topic Name	User Description	Number of Regis- ters ¹³	Regis- ter ¹³	Module ¹³	Units ¹³	Scale ¹³
810D_LDPU	Breaker LDPU in Progress	1	8862	PM		Scaling N/A
810DBrkrStatus	Breaker Status	1	661	BCM		Bit 0; ON = closed; OFF = open
810DBrkrTripStat	Breaker Trip Unit Status	1	661	BCM		Bit 2; ON = tripped; OFF = not tripped
BCM_SN	BCM Serial Number	4	516	BCM		ASCII text
BkrPos	Breaker Position	1	661	ССМ		Bit 8 = disconnected Bit 9 = connected Bit 10 = test position
CFVAB	Crest Factor Voltage A-B	1	1119	MM	No Units	Hundredths
CFVAN	Crest Factor Voltage A-N	1	1122	MM	No Units	Hundredths
CFVBC	Crest Factor Voltage B-C	1	1120	MM	No Units	Hundredths
CFVBN	Crest Factor Voltage B-N	1	1123	MM	No Units	Hundredths
CFVCA	Crest Factor Voltage C-A	1	1121	MM	No Units	Hundredths
CFVCN	Crest Factor Voltage C-N	1	1124	MM	No Units	Hundredths
DT_3Regs	Device Clock Date/Time	4	679	BCM		3-register date/time format ¹⁴
DTLastTrip	D/T of Last Trip	3	693	BCM		3-register date/time format ¹⁴
DTPkIAD	D/T Peak Demand Current A	3	3005	MM		3-register date/time format ¹⁴
DTPkIBD	D/T Peak Demand Current B	3	3008	MM		3-register date/time format ¹⁴
DTPkICD	D/T Peak Demand Current C	3	3011	MM		3-register date/time format ¹⁴
DTPkIND	D/T Peak Demand Current N	3	3014	ММ		3-register date/time format ¹⁴
DTPkKFDA	D/T K-Factor Dmd Peak A	3	3041	MM	No Units	3-register date/time format ¹⁴
DTPkKFDB	D/T K-Factor Dmd Peak B	3	3044	MM	No Units	3-register date/time format ¹⁴
DTPkKFDC	D/T K-Factor Dmd Peak C	3	3047	MM	No Units	3-register date/time format ¹⁴

For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.
3-register date/time format: register 1: month (byte 1) = 1–12; day (byte 2) = 1–31; register 2: year (byte 1) = 0–199 (add to 1900 to determine the actual year); hour (byte 2) = 0–23; register 3: minutes (byte 1) = 0–59; seconds (byte 2) = 0–59 Note: Bits 14 and 15 of the month/day register must be masked.

SMS Topic Name	User Description	Number of Regis- ters ¹⁵	Regis- ter ¹⁵	Module ¹⁵	Units ¹⁵	Scale ¹⁵
DTPkKFDN	D/T K-Factor Dmd Peak N	3	3050	MM	No Units	3-register date/time format ¹⁶
DTPkkVAD	D/T Peak Demand Apparent Power	3	3023	ММ		3-register date/time format ¹⁶
DTPkkVARD	D/T Peak Demand Reactive Power	3	3020	ММ		3-register date/time format ¹⁶
DTPkkWD	D/T Peak Demand Active Power	3	3017	MM		3-register date/time format ¹⁶
DTResetEnergy	D/T Last Reset Accum. Energies	3	3038	ММ		3-register date/time format ¹⁶
DTResetMinMax	D/T Last Reset Min/Max	3	3032	MM		3-register date/time format ¹⁶
DTResetPkID	D/T Last Reset Peak Dmd Currents	3	3026	MM		3-register date/time format ¹⁶
DTResetPkkWD	D/T Last Reset Peak Dmd Power	3	3029	ММ		3-register date/time format ¹⁶
EnableCloseBkr	Remote Closing Enabled	1	669	BCM		Bit 2; ON = enabled, OFF = not enabled
EnableOpenBkr	Remote Opening Enabled	1	669	BCM		Bit 1; ON = enabled; OFF = not enabled
EnableRemCtrl	Remote Control Enabled	1	669	BCM		Bit 3; ON = auto (enabled); OFF = manual (not enabled)
fkVAA	Fundamental Apparent Power A	1	1084	ММ	kVA	Scale E
fkVAB	Fundamental Apparent Power B	1	1085	ММ	kVA	Scale E
fkVAC	Fundamental Apparent Power C	1	1086	ММ	kVA	Scale E
fkVATtl	Fundamental Apparent Power Total	1	1087	MM	kVA	Scale E
fVAngA	Fundamental Voltage Ang A-B/A-N	1	1133	MM	Deg	Tenths
fVAngB	Fundamental Voltage Ang B-C/B-N	1	1134	MM	Deg	Tenths
fVAngC	Fundamental Voltage Ang C-A/C-N	1	1135	MM	Deg	Tenths
GFAlarmStatus	GF Alarm Status	1	8860	PM		Bit 0; ON = active; OFF = inactive
GFPreAlarmStatus	GF Alarm Pre-Alarm Status	1	8864	PM		Bit 0; ON = active; OFF = inactive
Hz	Frequency	1	1054	MM	Hz	Scale F
IA	Current A	1	1016	MM	А	Scale A - Phase Current
IA_PCT	Current A % Load	1	8837	PM	%	Unity
IAD	Demand Current A	1	2200	MM	А	Scale A
ІАррА	Current Apparent A	1	1023	MM	Α	Scale A
ІАррВ	Current Apparent B	1	1024	MM	A	Scale A
ІАррС	Current Apparent C	1	1025	MM	А	Scale A

For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.
3-register date/time format: register 1: month (byte 1) = 1–12; day (byte 2) = 1–31; register 2: year (byte 1) = 0–199 (add to 1900 to determine the actual year); hour (byte 2) = 0–23; register 3: minutes (byte 1) = 0–59; seconds (byte 2) = 0–59 Note: Bits 14 and 15 of the month/day

register must be masked.

SMS Topic Name	User Description	Number of Regis- ters ¹⁷	Regis- ter ¹⁷	Module ¹⁷	Units ¹⁷	Scale ¹⁷
IAppN	Current Apparent N	1	1026	MM	А	Scale B
IAvg	Current Avg	1	1027	MM	А	Scale A - Phase Current
IB	Current B	1	1017	MM	А	Scale A - Phase Current
IB_PCT	Current B % Load	1	8838	PM	%	Unity
IBD	Demand Current B	1	2201	MM	А	Scale A
IC	Current C	1	1018	MM	А	Scale A - Phase Current
IC_PCT	Current C % Load	1	8839	PM	%	Unity
ICD	Demand Current C	1	2202	MM	А	Scale A
IDatPkKFD_A	Current Demand at Peak K- Factor Demand A	1	2270	ММ	А	Scale A
IDatPkKFD_B	Current Demand at Peak K- Factor Demand B	1	2271	ММ	А	Scale A
IDatPkKFD_C	Current Demand at Peak K- Factor Demand C	1	2272	ММ	А	Scale A
IDatPkKFD_N	Current Demand at Peak K- Factor Demand N	1	2273	ММ	А	Scale B
IG	Current G	1	1021	MM	Α	Scale C
IG_PCT	Current G % Load	1	8841	PM	%	Unity
IG_PCT_VIGI	Current G (VIGI) % Load	1	8842	PM	%	Hundredths
IG_VIGI	Current G (VIGI)	1	8826	PM	А	Thousandths
IMax	Current Max Present	1	1020	MM	А	Scale A - Phase Current
IN	Current N	1	1019	MM	А	Scale B - Neutral Current
IN_PCT	Current N % Load	1	8840	PM	%	Unity
IND	Demand Current N	1	2203	MM	А	Scale B
IUnbalA	Current Unbalance A	1	1028	MM	%	Tenths
IUnbalAlrm	Current Unbalance Alarm Status	1	8859	РМ		Bit 0; ON = active; OFF = inactive
IUnbalB	Current Unbalance B	1	1029	MM	%	Tenths
IUnbalC	Current Unbalance C	1	1030	MM	%	Tenths
IUnbalPreAlrm	Current Unbalance Pre- Alarm Status	1	8863	РМ		Bit 0; ON = active, OFF = inactive
lUnbalW	Current Unbalance Worst	1	1032	MM	%	Tenths
KFDatPkID_A	K-Factor Demand at Peak Demand Current A	1	2254	MM	No Units	Tenths
KFDatPkID_B	K-Factor Demand at Peak Demand Current B	1	2255	ММ	No Units	Tenths
KFDatPkID_C	K-Factor Demand at Peak Demand Current C	1	2256	ММ	No Units	Tenths
KFDatPkID_N	K-Factor Demand at Peak Demand Current N	1	2257	ММ	No Units	Tenths
KFDN	K-Factor Demand N	1	2215	MM	No Units	Tenths
KFN	K-Factor N	1	1118	MM	No Units	Tenths

^{17.} For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.

SMS Topic Name	User Description	Number of Regis- ters ¹⁸	Regis- ter ¹⁸	Module ¹⁸	Units ¹⁸	Scale ¹⁸
kVAA	Apparent Power A	1	1042	MM	kVA	Scale E
kVAB	Apparent Power B	1	1043	MM	kVA	Scale E
kVAC	Apparent Power C	1	1044	MM	kVA	Scale E
kVAD	Demand Apparent Power	1	2236	MM	kVA	Scale D
kVAD_PkkVARD	KVA Dmd Coincident w/ Peak KVAR Dmd	1	2235	ММ	kVA	Scale D
kVAD_PkkWD	KVA Dmd Coincident w/ Peak KW Dmd	1	2229	ММ	kVA	Scale D
kVAHr	Apparent Energy	4	2024	MM	kVAH	Unity
kVARA	Reactive Power A	1	1038	MM	kVAR	Scale E
kVARB	Reactive Power B	1	1039	MM	kVAR	Scale E
kVARC	Reactive Power C	1	1040	MM	kVAR	Scale E
kVARD	Demand Reactive Power	1	2230	MM	kVAR	Scale D
kVARD_PkkVAD	KVAR Dmd Coincident w/ Peak KVA Dmd	1	2241	ММ	kVAR	Scale D
kVARD_PkkWD	KVAR Dmd Coincident w/ Peak KW Dmd	1	2228	ММ	kVAR	Scale D
kVARHr	Reactive Energy	4	2004	MM	kVARH	Unity
kVARHr_I	Reactive Energy Into the Load	4	2016	ММ	kVARH	Unity
kVARHr_O	Reactive Energy Out of the Load	4	2020	ММ	kVARH	Unity
kVARTtl	Reactive Power Total	1	1041	MM	kVAR	Scale E
kVATtl	Apparent Power Total	1	1045	MM	kVA	Scale E
kWA	Active Power A	1	1034	MM	kW	Scale E
kWB	Active Power B	1	1035	MM	kW	Scale E
kWC	Active Power C	1	1036	MM	kW	Scale E
kWD	Demand Active Power	1	2224	MM	kW	Scale D
kWD_PkkVAD	KW Dmd Coincident w/ Peak KVA Dmd	1	2240	ММ	kW	Scale D
kWD_PkkVARD	KW Dmd Coincident w/ Peak KVAR Dmd	1	2234	ММ	kW	Scale D
kWHr	Real Energy	4	2000	MM	kWH	Unity
kWHr_I	Real Energy Into the Load	4	2008	MM	kWH	Unity
kWHr_O	Real Energy Out of the Load	4	2012	ММ	kWH	Unity
kWTtl	Active Power Total	1	1037	MM	kW	Scale E
LDPUValue	Long Delay Pickup Value	2	8756	PM	А	Unity
LSCurrAlrm	Load Shed Current Alarm Status	1	8859	РМ		Bit 13; ON = active; OFF = inactive
LSCurrPreAlrm	Load Shed Current Pre- Alarm Status	1	8863	PM		Bit 13; ON = active; OFF = inactive

18. For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.

SMS Topic Name	User Description	Number of Regis- ters ¹⁹	Regis- ter ¹⁹	Module ¹⁹	Units ¹⁹	Scale ¹⁹
LSPwrAlrm	Load Shed Power Alarm Status	1	8859	PM		Bit 14; ON = active; OFF = inactive
LSPwrPreAlrm	Load Shed Power Pre- Alarm Status	1	8863	РМ		Bit 14; ON = active; OFF = inactive
M2C_M6CR1Status	Relay Module R1 Status	1	8857	PM		Bit 0; ON = on; OFF = off
M2C_M6CR2Status	Relay Module R2 Status	1	8857	PM		Bit 1; ON = on; OFF = off
M2C_M6CR3Status	Relay Module R3 Status	1	8857	PM		Bit 2; ON = on; OFF = off
M2C_M6CR4Status	Relay Module R4 Status	1	8857	PM		Bit 3; ON = on; OFF = off
M2C_M6CR5Status	Relay Module R5 Status	1	8857	PM		Bit 4; ON = on; OFF = off
M2C_M6CR6Status	Relay Module R6 Status	1	8857	PM		Bit 5; ON = on; OFF = off
MaxCFVAB	Maximum Crest Factor Voltage A-B	1	1719	MM	No Units	Hundredths
MaxCFVAN	Maximum Crest Factor Voltage A-N	1	1722	ММ	No Units	Hundredths
MaxCFVBC	Maximum Crest Factor Voltage B-C	1	1720	MM	No Units	Hundredths
MaxCFVBN	Maximum Crest Factor Voltage B-N	1	1723	ММ	No Units	Hundredths
MaxCFVCA	Maximum Crest Factor Voltage C-A	1	1721	ММ	No Units	Hundredths
MaxCFVCN	Maximum Crest Factor Voltage C-N	1	1724	MM	No Units	Hundredths
MaxfkVAA	Maximum Fundamental Apparent Power A	1	1684	ММ	kVA	Scale E
MaxfkVAB	Maximum Fundamental Apparent Power B	1	1685	MM	kVA	Scale E
MaxfkVAC	Maximum Fundamental Apparent Power C	1	1686	MM	kVA	Scale E
MaxfkVATtl	Maximum Fundamental Apparent Power Total	1	1687	MM	kVA	Scale E
MaxfVMagAB	Maximum Fundamental Voltage Mag A-B	1	1656	MM	V	Scale D
MaxfVMagAN	Maximum Fundamental Voltage Mag A-N	1	1659	MM	V	Scale D
MaxfVMagBC	Maximum Fundamental Voltage Mag B-C	1	1657	MM	V	Scale D
MaxfVMagBN	Maximum Fundamental Voltage Mag B-N	1	1660	MM	V	Scale D
MaxfVMagCA	Maximum Fundamental Voltage Mag C-A	1	1658	MM	V	Scale D
MaxfVMagCN	Maximum Fundamental Voltage Mag C-N	1	1661	MM	V	Scale D
MaxHz	Max Frequency	1	1654	MM	Hz	Scale F
MaxIA	Max Current A	1	1616	MM	Α	Scale A - Phase Current

^{19.} For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.

SMS Topic Name	User Description	Number of Regis- ters ²⁰	Regis- ter ²⁰	Module ²⁰	Units ²⁰	Scale ²⁰
MaxIAppA	Maximum Current Apparent A	1	1623	ММ	А	Scale A
MaxIAppB	Maximum Current Apparent B	1	1624	ММ	А	Scale A
MaxIAppC	Maximum Current Apparent C	1	1625	ММ	А	Scale A
MaxIAppN	Maximum Current Apparent N	1	1626	ММ	А	Scale B
MaxIAvg	Max Current Avg	1	1627	MM	А	Scale A - Phase Current
MaxIB	Max Current B	1	1617	MM	А	Scale A - Phase Current
MaxIC	Max Current C	1	1618	MM	А	Scale A - Phase Current
MaxIG	Max Current G	1	1621	MM	А	Scale C
MaxIG_VIGI	Max Current G (VIGI)	1	8832	PM	А	Thousandths
MaxIN	Max Current N	1	1619	MM	А	Scale B - Neutral Current
MaxIUnbalA	Max Current Unbalance A	1	1628	MM	%	Tenths
MaxIUnbalB	Max Current Unbalance B	1	1629	MM	%	Tenths
MaxIUnbalC	Max Current Unbalance C	1	1630	MM	%	Tenths
MaxIUnbalW	Max Current Unbalance Worst	1	1632	ММ	%	Tenths
MaxKFN	Maximum K-Factor N	1	1718	MM	No Units	Tenths
MaxkVAA	Max Apparent Power A	1	1642	MM	kVA	Scale E
MaxkVAB	Max Apparent Power B	1	1643	MM	kVA	Scale E
MaxkVAC	Max Apparent Power C	1	1644	MM	kVA	Scale E
MaxkVARA	Max Reactive Power A	1	1638	MM	kVAR	Scale E
MaxkVARB	Max Reactive Power B	1	1639	MM	kVAR	Scale E
MaxkVARC	Max Reactive Power C	1	1640	MM	kVAR	Scale E
MaxkVARTtl	Max Reactive Power Total	1	1641	MM	kVAR	Scale E
MaxkVATtl	Max Apparent Power Total	1	1645	MM	kVA	Scale E
MaxkWA	Max Active Power A	1	1634	MM	kW	Scale E
MaxkWB	Max Active Power B	1	1635	MM	kW	Scale E
MaxkWC	Max Active Power C	1	1636	MM	kW	Scale E
MaxkWTtl	Max Active Power Total	1	1637	MM	kW	Scale E
MaxPFA	Max Power Factor A	3	1646	MM		PF format ²¹
MaxPFB	Max Power Factor B	3	1647	MM		PF format ²¹
MaxPFC	Max Power Factor C	3	1648	MM		PF format ²¹
MaxPFTtl	Max Power Factor Total	3	1649	MM		PF format ²¹
MaxVAB	Max Voltage A-B	1	1600	MM	V	Scale D - Voltage
MaxVAN	Max Voltage A-N	1	1603	MM	V	Scale D - Voltage
MaxVBC	Max Voltage B-C	1	1601	MM	V	Scale D - Voltage

For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.
Power factor format: -1 to -999 for lagging power factors, 1000 for unity power factor 1.000, and 1 to 999 for leading power factors.

SMS Topic Name	User Description	Number of Regis- ters ²²	Regis- ter ²²	Module ²²	Units ²²	Scale ²²
MaxVBN	Max Voltage B-N	1	1604	ММ	V	Scale D - Voltage
MaxVCA	Max Voltage C-A	1	1602	ММ	V	Scale D - Voltage
MaxVCN	Max Voltage C-N	1	1605	ММ	V	Scale D - Voltage
MaxVLLAvg	Max Voltage L-L Avg	1	1606	MM	V	Scale D - Voltage
MaxVLNAvg	Max Voltage L-N Avg	1	1607	MM	V	Scale D - Voltage
MaxVUnbalAB	Max Voltage Unbalance A- B	1	1608	MM	%	Tenths
MaxVUnbalAN	Max Voltage Unbalance A- N	1	1611	MM	%	Tenths
MaxVUnbalBC	Max Voltage Unbalance B- C	1	1609	MM	%	Tenths
MaxVUnbalBN	Max Voltage Unbalance B- N	1	1612	MM	%	Tenths
MaxVUnbalCA	Max Voltage Unbalance C- A	1	1610	MM	%	Tenths
MaxVUnbalCN	Max Voltage Unbalance C- N	1	1613	MM	%	Tenths
MaxVUnbalLLW	Max Voltage Unbalance L-L Worst	1	1614	MM	%	Tenths
MaxVUnbalLNW	Max Voltage Unbalance L-N Worst	1	1615	MM	%	Tenths
MinCFVAB	Minimum Crest Factor Voltage A-B	1	1419	MM	No Units	Hundredths
MinCFVAN	Minimum Crest Factor Voltage A-N	1	1422	MM	No Units	Hundredths
MinCFVBC	Minimum Crest Factor Voltage B-C	1	1420	MM	No Units	Hundredths
MinCFVBN	Minimum Crest Factor Voltage B-N	1	1423	MM	No Units	Hundredths
MinCFVCA	Minimum Crest Factor Voltage C-A	1	1421	MM	No Units	Hundredths
MinCFVCN	Minimum Crest Factor Voltage C-N	1	1424	MM	No Units	Hundredths
MinfkVAA	Minimum Fundamental Apparent Power A	1	1384	MM	kVA	Scale E
MinfkVAB	Minimum Fundamental Apparent Power B	1	1385	MM	kVA	Scale E
MinfkVAC	Minimum Fundamental Apparent Power C	1	1386	MM	kVA	Scale E
MinfkVATtl	Minimum Fundamental Apparent Power Total	1	1387	MM	kVA	Scale E
MinfVMagAB	Minimum Fundamental Voltage Mag A-B	1	1356	MM	V	Scale D
MinfVMagAN	Minimum Fundamental Voltage Mag A-N	1	1359	MM	V	Scale D
MinfVMagBC	Minimum Fundamental Voltage Mag B-C	1	1357	MM	V	Scale D

22. For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.

SMS Topic Name	User Description	Number of Regis- ters ²³	Regis- ter ²³	Module ²³	Units ²³	Scale ²³
MinfVMagBN	Minimum Fundamental Voltage Mag B-N	1	1360	ММ	V	Scale D
MinfVMagCA	Minimum Fundamental Voltage Mag C-A	1	1358	ММ	V	Scale D
MinfVMagCN	Minimum Fundamental Voltage Mag C-N	1	1361	ММ	V	Scale D
MinHz	Min Frequency	1	1354	MM	Hz	Scale F
MinIA	Min Current A	1	1316	MM	А	Scale A - Phase Current
MinIAppA	Minimum Current Apparent A	1	1323	ММ	А	Scale A
MinIAppB	Minimum Current Apparent B	1	1324	ММ	А	Scale A
MinIAppC	Minimum Current Apparent C	1	1325	ММ	А	Scale A
MinIAppN	Minimum Current Apparent N	1	1326	ММ	А	Scale B
MinIAvg	Min Current Avg	1	1327	MM	А	Scale A - Phase Current
MinIB	Min Current B	1	1317	MM	А	Scale A - Phase Current
MinIC	Min Current C	1	1318	MM	А	Scale A - Phase Current
MinIN	Min Current N	1	1319	MM	Α	Scale B - Neutral Current
MinIUnbalA	Min Current Unbalance A	1	1328	MM	%	Tenths
MinIUnbalB	Min Current Unbalance B	1	1329	MM	%	Tenths
MinIUnbalC	Min Current Unbalance C	1	1330	MM	%	Tenths
MinIUnbalW	Min Current Unbalance Worst	1	1332	MM	%	Tenths
MinKFN	Minimum K-Factor N	1	1418	MM	No Units	Tenths
MinkVAA	Min Apparent Power A	1	1342	MM	kVA	Scale E
MinkVAB	Min Apparent Power B	1	1343	MM	kVA	Scale E
MinkVAC	Min Apparent Power C	1	1344	MM	kVA	Scale E
MinkVARA	Min Reactive Power A	1	1338	MM	kVAR	Scale E
MinkVARB	Min Reactive Power B	1	1339	MM	kVAR	Scale E
MinkVARC	Min Reactive Power C	1	1340	MM	kVAR	Scale E
MinkVARTtl	Min Reactive Power Total	1	1341	MM	kVAR	Scale E
MinkVATtl	Min Apparent Power Total	1	1345	MM	kVA	Scale E
MinkWA	Min Active Power A	1	1334	MM	kW	Scale E
MinkWB	Min Active Power B	1	1335	MM	kW	Scale E
MinkWC	Min Active Power C	1	1336	MM	kW	Scale E
MinkWTtl	Min Active Power Total	1	1337	MM	kW	Scale E
MinPFA	Min Power Factor A	3	1346	MM		PF format ²⁴
MinPFB	Min Power Factor B	3	1347	MM		PF format ²⁴
MinPFC	Min Power Factor C	3	1348	MM		PF format ²⁴

For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.
Power factor format: -1 to -999 for lagging power factors, 1000 for unity power factor 1.000, and 1 to 999 for leading power factors.
SMS Topic Name	User Description	Number of Regis- ters ²⁵	Regis- ter ²⁵	Module ²⁵	Units ²⁵	Scale ²⁵
MinPFTtl	Min Power Factor Total	3	1349	MM		PF format ²⁶
MinVAB	Min Voltage A-B	1	1300	MM	V	Scale D - Voltage
MinVAN	Min Voltage A-N	1	1303	MM	V	Scale D - Voltage
MinVBC	Min Voltage B-C	1	1301	MM	V	Scale D - Voltage
MinVBN	Min Voltage B-N	1	1304	MM	V	Scale D - Voltage
MinVCA	Min Voltage C-A	1	1302	MM	V	Scale D - Voltage
MinVCN	Min Voltage C-N	1	1305	MM	V	Scale D - Voltage
MinVLLAvg	Min Voltage L-L Avg	1	1306	MM	V	Scale D - Voltage
MinVLNAvg	Min Voltage L-N Avg	1	1307	MM	V	Scale D - Voltage
MinVUnbalAB	Min Voltage Unbalance A-B	1	1308	MM	%	Tenths
MinVUnbalAN	Min Voltage Unbalance A-N	1	1311	MM	%	Tenths
MinVUnbalBC	Min Voltage Unbalance B-C	1	1309	MM	%	Tenths
MinVUnbalBN	Min Voltage Unbalance B-N	1	1312	MM	%	Tenths
MinVUnbalCA	Min Voltage Unbalance C-A	1	1310	MM	%	Tenths
MinVUnbalCN	Min Voltage Unbalance C-N	1	1313	MM	%	Tenths
MinVUnbalLLW	Min Voltage Unbalance L-L Worst	1	1314	MM	%	Tenths
MinVUnbalLNW	Min Voltage Unbalance L-N Worst	1	1315	MM	%	Tenths
NominalCurrent	Breaker Nominal Current	1	8750	PM	А	Unity
OverFreqAlrm	Over Frequency Alarm Status	1	8859	PM		Bit 11; ON = active, OFF = inactive
OverFreqPreAlrm	Over Frequency Pre-Alarm Status	1	8863	РМ		Bit 11; ON = active, OFF = inactive
OverIAAIrm	Over IA Demand Alarm Status	1	8859	РМ		Bit 1; ON = active, OFF = inactive
OverIAPreAlrm	Over IA Demand Pre-Alarm Status	1	8863	РМ		Bit 1; ON = active, OFF = inactive
OverIBAIrm	Over IB Demand Alarm Status	1	8859	РМ		Bit 2; ON = active, OFF = inactive
OverIBPreAlrm	Over IB Demand Pre-Alarm Status	1	8863	РМ		Bit 2; ON = active, OFF = inactive
OverICAIrm	Over IC Demand Alarm Status	1	8859	РМ		Bit 3; ON = active, OFF = inactive
OverICPreAlrm	Over IC Demand Pre-Alarm Status	1	8863	PM		Bit 3; ON = active, OFF = inactive
OverINAIrm	Over IN Demand Alarm Status	1	8859	РМ		Bit 4; ON = active, OFF = inactive
OverINPreAlrm	Over IN Demand Pre-Alarm Status	1	8863	РМ		Bit 4; ON = active, OFF = inactive
OverVoltAlrm	Over Voltage Alarm Status	1	8859	PM		Bit 6; ON = active, OFF = inactive
OverVoltPreAlrm	Over Voltage Pre-Alarm Status	1	8863	PM		Bit 6; ON = active, OFF = inactive

For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.
Power factor format: -1 to -999 for lagging power factors, 1000 for unity power factor 1.000, and 1 to 999 for leading power factors.

SMS Topic Name	User Description	Number of Regis- ters ²⁷	Regis- ter ²⁷	Module ²⁷	Units ²⁷	Scale ²⁷
PF_PkkVAD	PF Coincident w/Peak KVA Demand	3	2239	ММ		Thousandths
PF_PkkVARD	PF Coincident w/Peak KVAR Demand	3	2233	MM		Thousandths
PF_PkkWD	PF Coincident w/Peak KW Demand	3	2227	ММ		Thousandths
PFA	Power Factor A	3	1046	MM		PF format ²⁸
PFB	Power Factor B	3	1047	MM		PF format ²⁸
PFC	Power Factor C	3	1048	MM		PF format ²⁸
PFTtl	Power Factor Total	3	1049	MM		PF format ²⁸
PhaRotAlrm	Phase Rotation Alarm Status	1	8859	PM		Bit 12; ON = active, OFF = inactive
PkIAD	Peak Demand Current A	1	2204	MM	А	Scale A
PkIBD	Peak Demand Current B	1	2205	MM	А	Scale A
PkICD	Peak Demand Current C	1	2206	MM	А	Scale A
PkIND	Peak Demand Current N	1	2207	MM	А	Scale A
PkKFDA	Peak K-Factor Demand A	1	2216	MM	No Units	Tenths
PkKFDB	Peak K-Factor Demand B	1	2217	MM	No Units	Tenths
PkKFDC	Peak K-Factor Demand C	1	2218	MM	No Units	Tenths
PkKFDN	Peak K-Factor Demand N	1	2219	MM	No Units	Tenths
PkkVAD	Peak Demand Apparent Power	1	2237	MM	kVA	Scale A
PkkVARD	Peak Demand Reactive Power	1	2231	MM	kVAR	Scale A
PkkWD	Peak Demand Active Power	1	2225	MM	kW	Scale A
PredIAD	Predicted Demand Current A	1	2208	MM	А	Scale A
PredIBD	Predicted Demand Current B	1	2209	MM	А	Scale A
PredICD	Predicted Demand Current C	1	2210	MM	А	Scale A
PredIND	Predicted Demand Current N	1	2211	MM	А	Scale A
PredKFDA	Predicted K-Factor Demand A	1	2220	MM	No Units	Tenths
PredKFDB	Predicted K-Factor Demand B	1	2221	MM	No Units	Tenths
PredKFDC	Predicted K-Factor Demand C	1	2222	MM	No Units	Tenths
PredKFDN	Predicted K-Factor Demand N	1	2223	MM	No Units	Tenths
PredkVAD	Predicted KVA Demand	1	2238	MM	kVA	Scale A
PredkVARD	Predicted KVAR Demand	1	2232	MM	kVAR	Scale A
PredkWD	Predicted KW Demand	1	2226	MM	kW	Scale A

For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.
Power factor format: -1 to -999 for lagging power factors, 1000 for unity power factor 1.000, and 1 to 999 for leading power factors.

SMS Topic Name	User Description	Number of Regis- ters ²⁹	Regis- ter ²⁹	Module ²⁹	Units ²⁹	Scale ²⁹
R1OpsCounter	Relay 1 Operations Counter	1	9081	PM		Unity
R2OpsCounter	Relay 2 Operations Counter	1	9082	PM		Unity
R3OpsCounter	Relay 3 Operations Counter	1	9083	PM		Unity
R4OpsCounter	Relay 4 Operations Counter	1	9084	PM		Unity
R5OpsCounter	Relay 5 Operations Counter	1	9085	PM		Unity
R6OpsCounter	Relay 6 Operations Counter	1	9086	PM		Unity
ReadyToClose	Breaker Ready to Close	1	661	BCM		Bit 5; ON = yes, OFF = no
RevPwrAlrm	Reverse Power Alarm Status	1	8859	PM		Bit 9; ON = active; OFF = inactive
RevPwrPreAlrm	Reverse Power Pre-Alarm Status	1	8863	PM		Bit 9; ON = active; OFF = inactive
TimeToTrip	Time Remaining to LT Trip	2	8865	PM		Tenths
TU_BATT_PCT	Trip Unit % Battery	1	8843	PM	%	Unity
TU_SN	Trip Unit Serial Number	4	8700	PM		ASCII text
TUCommStatus	Trip Unit Internal Comms Status	1	552	BCM		Bit 11; ON = not responding; OFF = OK
UnderFreqAlrm	Under Frequency Alarm Status	1	8859	PM		Bit 10; ON = active; OFF = inactive
UnderFreqPreAlrm	Under Frequency Pre- Alarm Status	1	8863	PM		Bit 10; ON = active; OFF = inactive
UnderVoltAlrm	Under Voltage Alarm Status	1	8859	PM		Bit 5; ON = active; OFF = inactive
UnderVoltPreAlrm	Under Voltage Pre-Alarm Status	1	8863	PM		Bit 5; ON = active; OFF = inactive
VAB	Voltage A-B	1	1000	ММ	V	Scale D - Voltage
VAN	Voltage A-N	1	1003	ММ	V	Scale D - Voltage
VBC	Voltage B-C	1	1001	ММ	V	Scale D - Voltage
VBN	Voltage B-N	1	1004	ММ	V	Scale D - Voltage
VCA	Voltage C-A	1	1002	ММ	V	Scale D - Voltage
VCN	Voltage C-N	1	1005	ММ	V	Scale D - Voltage
VigiAlarm	Vigi Alarm Status	1	8860	PM		Bit 1; ON = active; OFF = inactive
VigiPreAlrm	Vigi Pre-Alarm Status	1	8864	PM		Bit 1; ON = active; OFF = inactive
VLLAvg	Voltage L-L Avg	1	1006	ММ	V	Scale D - Voltage
VLNAvg	Voltage L-N Avg	1	1007	ММ	V	Scale D - Voltage
VUnbalAB	Voltage Unbalance A-B	1	1008	ММ	%	Tenths
VUnbalAlrm	Voltage Unbalance Alarm Status	1	8859	РМ		Bit 7; ON = active, OFF = inactive
VUnbalAN	Voltage Unbalance A-N	1	1011	ММ	%	Tenths
VUnbalBC	Voltage Unbalance B-C	1	1009	ММ	%	Tenths
VUnbalBN	Voltage Unbalance B-N	1	1012	ММ	%	Tenths

^{29.} For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.

SMS Topic Name	User Description	Number of Regis- ters ³⁰	Regis- ter ³⁰	Module ³⁰	Units ³⁰	Scale ³⁰
VUnbalCA	Voltage Unbalance C-A	1	1010	ММ	%	Tenths
VUnbalCN	Voltage Unbalance C-N	1	1013	MM	%	Tenths
VUnbalLLW	Voltage Unbalance L-L Worst	1	1014	ММ	%	Tenths
VUnbalLNW	Voltage Unbalance L-N Worst	1	1015	ММ	%	Tenths
VUnbalPreAlrm	Voltage Unbalance Pre- Alarm Status	1	8863	РМ		Bit 7; ON = active, OFF = inactive

^{30.} For register entries that are not listed, please refer to the MicroLogic device type register list. Contact your local sales representative.

Appendix D—Trip Unit Voltage Supply Architecture

The trip unit has an integral internal three-phase voltage power supply which appears as a three-phase delta configured load to the system (Integral Internal Three-phase Power Supply, page 113). This power supply is a three-phase load by itself and will inject voltage on an open phase (Open Phase on Three-phase Power Supply, page 114). The impact of a three-phase delta configured load on the voltage-based protection functions is as follows:

NOTICE

HAZARD OF EQUIPMENT DAMAGE

Setting undervoltage protection (Vmin) below 80% or voltage unbalance (Vunbal) above 20% can cause the trip unit to not perform as expected.

Failure to follow these instructions can result in equipment damage.

Minimum Voltage Protection

The minimum (under) voltage protection function is based on phase-to-phase voltage measurement.

For circuit configuration 1 (Circuit Configuration 1, page 114), 2 (Circuit Configuration 2, page 115) or 3 (Circuit Configuration 3, page 115), if a fuse opens the trip unit will inject voltage on the open phase. Therefore the trip unit will meter the voltage being injected on the open phase accurately. The phase-to-phase voltage (V_{LL}) measurement will be higher than when the open phase is at zero volts. The trip unit will also accurately meter the phase-to-neutral voltage (V_{LN}) injected on the open phase and display a value greater than zero.

For circuit configuration 4 (Circuit Configuration 4, page 115), the trip unit has a return path through the transformer and the injected voltage on the open phase will be zero. In this configuration the trip unit will accurately meter zero volts on V_{LN} .

To ensure the MicroLogic trip system will perform as expected regardless of system configuration the user should limit the undervoltage pickup range to 80%–100% of the nominal phase-to-phase system voltage.

Figure 103 - Integral Internal Three-phase Power Supply

Figure 104 - Open Phase on Three-phase Power Supply

Figure 105 - Circuit Configuration 1

Voltage Unbalance Protection

The voltage unbalance protection function is based on phase-to-phase voltage measurement.

For circuit configuration 1 (Circuit Configuration 1, page 114), 2 (Circuit Configuration 2, page 115) or 3 (Circuit Configuration 3, page 115), if a fuse opens the trip unit will inject voltage on the open phase. Therefore the trip unit will meter the voltage being injected on the open phase accurately.

The phase-to-phase voltage (V_{LL}) measurement will be higher than when the open phase is at zero volts. The trip unit will also accurately meter the phase-to-neutral voltage (V_{LN}) injected on the open phase and display a value greater than zero.

For circuit configuration 4 (Circuit Configuration 4, page 115), the trip unit has a return path through the transformer and the injected voltage on the open phase will be zero. In this configuration the trip unit will accurately meter zero volts on V_{LN} .

To ensure the MicroLogic trip system will perform as expected regardless of system configuration the user should limit the voltage unbalance protection settings to 0-20%.

Figure 108 - Circuit Configuration 4

Loss of Multiple Phases

Do not use either minimum voltage protection or voltage unbalance protection to determine the loss of multiple phases.

- The internal voltage power supply requires voltage of two phases to operate. (The voltage power supply has an operating range from 100 V to 690 V.)
- In circuit configurations 1 (Figure 103), 2 (Figure 104) and 3 (Figure 105), when multiple phases are lost the trip unit will measure the system voltage of the remaining phase on all three phases. For example, if two phases are lost on a 480 V three-phase delta system, the trip unit will meter 480 V_{LL} on all three phases.

Appendix E—Trip Unit Settings

Enter setting values in settings tables.

Table 18 - Settings–Switches

Description	Symbol	Settings
Long-time pickup	lr	
Long-time delay	tr	
Short-time pickup	lsd	
Short-time delay	tsd	
Ground-fault pickup	lg	
Ground-fault delay	tg	

Table 19 - Settings—Maintenance Menu

Submenu	Description	Line Item	Trip Unit Setting
	Alarm type	S#	
M2C/M6C contacts	Setup	S#	
	Language	—	
	Date/Time	—	
		Standard	
		Circuit breaker	
	Breaker selection	Туре	
MicroLogic setup		Circuit breaker number	
	Neutral CT	—	
	\/T ratio	Primary	
	VTTauo	Secondary	
	System frequency		
	System type	—	
	Current demand	Interval	
Motoring optup	Dower domand	Window type	
Metering setup	Fower demand	Interval	
	Power sign	—	
	Sign convention	—	
	Com parameter	—	
Com setup	Remote access	—	
	Remote control	—	

Table 20 - Settings—Protection Menu

Submenu	Description	Symbol	Line Item	Trip Unit Setting
Amperage protection	Long-time pickup	lr		

Submenu	Description	Symbol	Line Item	Trip Unit Setting
	Long-time delay	tr		
	Short-time pickup	lsd		
	Short-time delay	tsd		
	Instantaneous	li		
	Idmtl Long-time pickup	ldmtl Ir		
	Idmtl Long-time delay	ldmtl tr		
	Idmtl Mode			
	Idmtl Short-time pickup	ldmtl Isd		
	Idmtl Short-time delay	ldmtl tsd		
	Idmtl Instantaneous	ldmtl li		
			Mode	
	Ground-fault (6.0P trip unit)	<u>‡</u>	Pickup	
	,		Pickup delay	
	Neutral current	Ineutral		
			Mode	
			Pickup	
	Ground-fault alarm	l <i>≰</i> alarm	Pickup delay	
			Dropout	
			Dropout delay	
	Current unbalance		Mode	
			Pickup %	
		lunbal	Pickup delay	
			Dropout %	
			Dropout delay	
			Mode	
			Pickup	
	Max. phase A demand current	la max	Pickup delay	
			Dropout	
			Dropout delay	
			Mode	
			Pickup	
	Max. phase B demand	lb max	Pickup delay	
	ouron	12 11 201	Dropout	
			Dropout delay	
			Mode	
	Max phase C demand		Pickup	
	current	Ic max	Pickup delay	
			Dropout	

Table 20 - Settings—Protection Menu (Continued)

Submenu	Description	Symbol	Line Item	Trip Unit Setting
			Dropout delay	
			Mode	
	Max. neutral demand		Pickup	
		In max	Pickup delay	
			Dropout	
			Dropout delay	
			Pickup	
			Pickup delay	
	Minimum (under) voltage	Vmin	Dropout	
			Dropout delay	
			Pickup	
Voltage protection			Pickup delay	
	Maximum (over) voltage	Vmax	Dropout	
			Dropout delay	
	Voltage unbalance	Vunbal	Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	
	Reverse power	rP	Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	
		Fmax	Pickup	
	Maximum (over) frequency		Pickup delay	
Other			Dropout	
protection			Dropout delay	
			Pickup	
	Minimum (under)		Pickup delay	
	frequency	Fmin	Dropout	
			Dropout delay	
			Mode	
	Phase rotation	-	Sequence	
			Mode	
			Pickup %	
Load shedding	Load shedding I	_	Pickup delay %	
			Dropout %	
			Dropout delay	
Load shedding P	Load shedding P	-	Mode	

Table 20 - Settings—Protection Menu (Continued)

Submenu	Description	Symbol	Line Item	Trip Unit Setting
			Pickup	
			Pickup delay	
			Dropout	
			Dropout delay	

Table 20 - Settings—Protection Menu (Continued)

Index

Α

Adjustable rating plug description replacement Adjustable switches	13 82
adjusting	
description	10
Advanced protection	
checking values	58
description	20
Alarm history	65
Alarms	
description	21
frequency	38
history	65
M2C/M6C programmable contacts	26
Amperage protection	
checking	66
menu description	36

В

Battery check status replacement Buttons	57 84
down	30
enter	
maintenance menu	
metering menu	
navigation	
protection menu	
test/reset	
up	

С

Communication module cybersecurity	
description	10 48
Communication setup menu description	
Contact wear	
checking	66
indicator	29
Control power	18
Current levels	
checking	59
display	29
menu	32
Current load shedding	
alarm	
checking	73
description	25
menu description	
Current unbalance	
protection	23
Cybersecurity	10

D

Ε

Energy levels	
checking	
menu	
Enter button	
External power supply	

F

Flowchart	
maintenance menu	88
metering menu	87
protection menu	89
Frequency	
alarm	
checking	63
menu	
protection	24

G

Graphic display	
flowchart	87
menus	
navigation	
screen	
Ground-fault alarm	
alarm	
Ground-fault delay	17
Ground-fault protection	
delay switch	17
description	17
pickup switch	17
test function	

Н

History logs	
checking	63
description	

I

Idmtl (inverse definite minimum time lag)	13
Ig (ground-fault pickup)	17
li (nstantaneous protection)	16
Indicator lights	
Ap (advanced protection)	28

Ig (ground-fault pickup) Ir (long-time pickup) Isd/li (instantaneous) Isd/li (short-time pickup) overload trip Instantaneous protection Ir (long-time pickup) Isd (short-time pickup)	
---	--

L

Language setting	41
Load shedding	25
Long-time delay	
Long-time protection	
delay switch	
description	
l2t delay	
Idmtl delay	
pickup switch	
LŚI	9
LSIG	9

Μ

M2C/M6C programmable contacts	26
menu description	34
menu setting	
Maintenance menu	
button	
description	
flowchart	
Maximum current protection	23
Maximum frequency protection	24
Maximum voltage protection	23
Menu	
maintenance	
metering	
protection	
Menus	
amperage protection	
Communication setup	35
current	
current load shedding	
energy	
frequency	
history logs	34
M2C/M6C programmable contacts	34
Metering setup	35
MicroLogic setup	35
other protection	
power	
power load shedding	
voltage	
voltage protection	
Metering	
accuracy	94
range	94
Metering menu	
button	
checking	58
description	32
flowchart	87

Metering setup		_
menu description	3	5
Metering setup menu		_
setting	4	5
MicroLogic setup	_	_
menu description	3	5
Micrologic trip unit		_
switches	1	0
testing	2	7
MicroLogic trip unit		
5.0P	1	1
6.0P	1	2
control power	1	8
graphic display screen	2	9
ground-fault delay	1	1
ground-fault protection	1	1
Instantaneous protection	1	6
long-time delay	1	3
long-time protection	1	3
	2	0
	······/·	4
		C ⊿
setting	4	17
seulings	11	1
short time protection	۱۱	Э Е
stotue shock	I	Э 7
status check	Э Б	1
veltago supply architecture		2
Microl ogic Trip Unit	11	ა
Minimum ourrent protection	 ດ	ฮ ว
Minimum frequency protection	2 າ	5 1
Minimum voltage protection	∠' ?? 11	4
	∠J, II	J

Ν

Navigation buttons	
Neutral protection	20

0

Operation	
Operation counter	27
menu	65
Other protection	
checking	72
menu description	
Overload indicator light	

Ρ

Phase rotation protection	25
checkina	61
menu	
Power load shedding	
alarm	
description	25
menu	
Power Load Shedding	
checking	73
Power supply	
external	19

protection	
Current unbalance	
Protection	
advanced	20
Protection menu	
button	
description	
flowchart	
Protection menus	
checking	66

R

Rating plug	
description	13
replacement	82
Register values	
Remotely readable measurements	96
Replacement	
battery	84
rating plug	82
trip unit	74
Reverse power protection	24
rPmax	24

S

Short-time delay	
Short-time protection	
Switches	
adjusting	50
description	

Т

Test/reset button Testing	29
ground-fault protection	56
tg (ground-fault delay)	17
tr (long-time delay)	13
Trip history	64
Trip indicator lights	
Trip unit	
5.0P	11
6.0P	12
control power	
graphic display screen	29
ground-fault delay	17
ground-fault protection	17
instantaneous protection	
long-time delay	
long-time protection	
MicroLogic Setup	20
replacement	74
reset	55
settina	41
settings	117
short-time delay	
short-time protection	
status check	57
switches	
testing	27
verify operation	
· 7 - F - ·	

voltage supply architecture	113
Trip Unit	9
tsd (short-time delay)	15

U

V

Voltage levels	
checking	60
menu	
Voltage protection	
checking	71
menu description	
minimum	113
Voltage supply architecture	113
Voltage unbalance	
protection	23, 37, 114

Ζ

Zone-selective interlocking	
description	26
installation	54

Schneider Electric

800 Federal Street Andover, MA 01810 USA

888-778-2733

www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.

© 2000 – 2023 Schneider Electric. All rights reserved.

48049-137-06EN