## **PacT** Series

## ComPacT NS - Unidades de control MicroLogic A y E

## Guía del usuario

PacT Series ofrece interruptores e interruptores automáticos de primer nivel.

#### DOCA0218ES-00 01/2022





## Información legal

La marca Schneider Electric y cualquier otra marca comercial de Schneider Electric SE y sus filiales mencionadas en esta guía son propiedad de Schneider Electric SE o sus filiales. Todas las otras marcas pueden ser marcas comerciales de sus respectivos propietarios. Esta guía y su contenido están protegidos por las leyes de copyright aplicables, y se proporcionan exclusivamente a título informativo. Ninguna parte de este manual puede ser reproducida o transmitida de cualquier forma o por cualquier medio (electrónico, mecánico, fotocopia, grabación u otro), para ningún propósito, sin el permiso previo por escrito de Schneider Electric.

Schneider Electric no concede ningún derecho o licencia para el uso comercial de la guía o su contenido, excepto por una licencia no exclusiva y personal para consultarla "tal cual".

La instalación, utilización, mantenimiento y reparación de los productos y equipos de Schneider Electric la debe realizar solo personal cualificado.

Debido a la evolución de las normativas, especificaciones y diseños con el tiempo, la información contenida en esta guía puede estar sujeta a cambios sin previo aviso.

En la medida permitida por la ley aplicable, Schneider Electric y sus filiales no asumen ninguna responsabilidad u obligación por cualquier error u omisión en el contenido informativo de este material o por las consecuencias derivadas o resultantes del uso de la información contenida en el presente documento.

Como parte de un grupo de empresas responsables e inclusivas, estamos actualizando nuestras comunicaciones que contienen terminología no inclusiva. Sin embargo, hasta que completemos este proceso, es posible que nuestro contenido todavía contenga términos estandarizados del sector que pueden ser considerados inapropiados para nuestros clientes.

## Tabla de contenido

| Información de seguridad                                                | 5  |
|-------------------------------------------------------------------------|----|
| Acerca de este libro                                                    | 6  |
| Introducción a la unidad de control MicroLogic A/E                      | 7  |
| Presentación                                                            | 8  |
| Descripción                                                             | 10 |
| Indicadores LED de señalización                                         | 18 |
| Página de inicio de Go2SE                                               | 20 |
| Uso de la interfaz hombre-máquina de MicroLogic A/E                     | 21 |
| Modos de visualización de la HMI                                        | 22 |
| Modo de Vista rápida de la unidad de control MicroLogic E               | 23 |
| Presentación                                                            | 24 |
| Uso de la Vista rápida                                                  | 26 |
| Personalización de la Vista rápida                                      | 27 |
| Modo de navegación de árbol                                             | 29 |
| Presentación                                                            | 30 |
| Pantalla de menús de la unidad MicroLogic A                             | 32 |
| Pantalla de menús de la unidad MicroLogic E                             | 33 |
| Visualización de los ajustes de protección                              | 35 |
| Visualización y restablecimiento de la energía activa total (MicroLogi  | С  |
| E)                                                                      | 37 |
| Visualización del historial de disparos (MicroLogic E)                  | 39 |
| Ajustes de la unidad MicroLogic A                                       | 41 |
| Ajustes de la unidad MicroLogic E                                       | 45 |
| Ajustes de protección para la unidad de control MicroLogic A/           |    |
| Ε                                                                       | 50 |
| Procedimiento de ajuste                                                 | 51 |
| Ajuste de la unidad de control MicroLogic 2.0A/E                        | 52 |
| Ajuste de la unidad de control MicroLogic 5.0A/E                        | 53 |
| Ajuste de la unidad de control MicroLogic 6.0A/E                        | 54 |
| Ajuste de la unidad de control MicroLogic 7.0A                          | 56 |
| Ajuste de la protección del neutro                                      | 58 |
| Funciones de protección de la unidad de control MicroLogic A/           |    |
| Ε                                                                       | 60 |
| Protección de largo retardo                                             | 61 |
| Protección de corto retardo                                             | 62 |
| Protección instantánea                                                  | 63 |
| Protección de defecto a tierra en la unidad de control MicroLogic 6.0A/ |    |
| Ε                                                                       | 64 |
| Protección de diferencial en la unidad de control MicroLogic 7.0A       | 65 |
| Protección del neutro                                                   | 66 |
| Otras funciones de la unidad de control MicroLogic A/E                  | 67 |
| Mediciones                                                              | 68 |
| Historial de disparos de la unidad de control MicroLogic E              | 71 |
| Función de comunicación                                                 | 72 |
| Mantenimiento de la unidad de control MicroLogic A/E                    | 73 |
| Comprobación y sustitución de la batería interna                        | 74 |
|                                                                         |    |

| Prueba de las funciones de protección de defecto a tierra y |    |
|-------------------------------------------------------------|----|
| diferencial                                                 | 77 |
| Prueba de la unidad de control MicroLogic                   | 78 |
| Apéndice técnico                                            | 80 |
| Curvas de disparo                                           | 81 |
| Conector de cálculo de largo retardo                        | 83 |
| Enclavamiento selectivo de zona (ZSI)                       |    |
| Pantalla de MicroLogic                                      | 89 |
| Fuente de alimentación                                      |    |
| Memoria térmica                                             | 93 |
| Cálculo de valores de media (MicroLogic E)                  | 94 |
| Rangos de medición y precisión                              | 96 |
|                                                             |    |

## Información de seguridad

#### Información importante

Lea atentamente estas instrucciones y observe el equipo para familiarizarse con el dispositivo antes de instalarlo, utilizarlo, revisarlo o realizar su mantenimiento. Los mensajes especiales que se ofrecen a continuación pueden aparecer a lo largo de la documentación o en el equipo para advertir de peligros potenciales, o para ofrecer información que aclara o simplifica los distintos procedimientos.



La inclusión de este icono en una etiqueta "Peligro" o "Advertencia" indica que existe un riesgo de descarga eléctrica, que puede provocar lesiones si no se siguen las instrucciones.



Éste es el icono de alerta de seguridad. Se utiliza para advertir de posibles riesgos de lesiones. Observe todos los mensajes que siguen a este icono para evitar posibles lesiones o incluso la muerte.

### 

**PELIGRO** indica una situación de peligro que, si no se evita, **provocará** lesiones graves o incluso la muerte.

### ADVERTENCIA

**ADVERTENCIA** indica una situación de peligro que, si no se evita, **podría provocar** lesiones graves o incluso la muerte.

### 🛦 ATENCIÓN

**ATENCIÓN** indica una situación peligrosa que, si no se evita, **podría provocar** lesiones leves o moderadas.

#### AVISO

**AVISO** indica una situación potencialmente peligrosa que, si no se evita, **puede provocar** daños en el equipo.

#### Tenga en cuenta

La instalación, manejo, puesta en servicio y mantenimiento de equipos eléctricos deberán ser realizados sólo por personal cualificado. Schneider Electric no se hace responsable de ninguna de las consecuencias del uso de este material.

Una persona cualificada es aquella que cuenta con capacidad y conocimientos relativos a la construcción, el funcionamiento y la instalación de equipos eléctricos, y que ha sido formada en materia de seguridad para reconocer y evitar los riesgos que conllevan tales equipos.

## Acerca de este libro

#### Objeto

El objetivo de esta guía es proporcionar a los usuarios, instaladores y personal de mantenimiento la información técnica necesaria para usar las unidades de control MicroLogic<sup>™</sup> A/E en interruptores automáticos ComPacT<sup>™</sup> NS.

#### Campo de aplicación

Esta guía se aplica a las unidades de control ComPacT NSMicroLogic A/E.

#### Información en línea

La información incluida en esta guía está sujeta a actualizaciones en cualquier momento. Schneider Electric recomienda encarecidamente tener la versión más reciente y actualizada que está disponible en www.se.com/ww/en/download.

Las características técnicas de los dispositivos que se describen en este documento también se encuentran online. Para acceder a la información online, vaya a la página de inicio de Schneider Electric en www.se.com.

#### **Documentos relacionados**

| Título de la documentación                                                                     | Número de referencia |
|------------------------------------------------------------------------------------------------|----------------------|
| ComPacT NS - Interruptores automáticos y disyuntores - Guía<br>del usuario                     | DOCA0221ES           |
| ComPacT NS - Guía de comunicación Modbus                                                       | DOCA0220ES           |
| ComPacT NS630b-1600 - Interruptor automático o disyuntor fijos<br>- Hoja de instrucciones      | JYT6180003           |
| ComPacT NS630b-1600 - Interruptor automático o disyuntor<br>extraíbles - Hoja de instrucciones | JYT6180103           |
| ComPacT NS1600b-3200 - Interruptor automático o disyuntor<br>fijos - Hoja de instrucciones     | JYT6180203           |

Puede descargar estas publicaciones técnicas y otra información técnica de nuestro sitio web www.se.com/ww/en/download.

## Introducción a la unidad de control MicroLogic A/E

#### Contenido de esta parte

| Presentación                     | .8 |
|----------------------------------|----|
| Descripción1                     | 10 |
| Indicadores LED de señalización1 | 18 |
| Página de inicio de Go2SE 2      | 20 |

### Presentación

#### Área principal de la PacT Series

Prepara tu instalación para el futuro con la PacT Series de baja y media tensión de Schneider Electric. Basada en la legendaria innovación de Schneider Electric, la PacT Series incluye interruptores automáticos, interruptores, dispositivos de corriente residual y fusibles de primer nivel para todas las aplicaciones estándar y específicas. Disfruta de un sólido rendimiento con la PacT Series en los equipos de conmutación preparados para EcoStruxure, de 16 a 6300 A en baja tensión y hasta 40,5 kV en media tensión.

#### Introducción

Los interruptores automáticos ComPacT NS630-3200 vienen equipados con una unidad de control MicroLogic diseñada para proteger los circuitos de alimentación y las cargas conectadas.

#### X: Tipo de protección

- 2 para protección básica
- 5 para protección selectiva
- 6 para protección selectiva y de defecto a tierra
- 7 para protección selectiva y de diferencial

#### Y: Número de versión

Identificación de la generación de la unidad de control (0 corresponde a la primera generación).

#### Z: Tipo de medición

- A: Amperímetro
- E: Medidor de energía
- P: Potenciómetro
- Sin indicación: No hay mediciones

**NOTA:** En esta guía, A/E significa A o E cuando las características son comunes a las unidades de disparo MicroLogic A y MicroLogic E.

#### Gama de unidades de control MicroLogic A/E

En la tabla siguiente se indican las funciones estándar disponibles en interruptores automáticos ComPacT NS con unidades de control MicroLogic A/E:

| Función                                               | Unidad de control MicroLogic |       |       |       |       |       |       |
|-------------------------------------------------------|------------------------------|-------|-------|-------|-------|-------|-------|
|                                                       | 2.0 A                        | 2.0 E | 5.0 A | 5.0 E | 6.0 A | 6.0 E | 7.0 A |
| Protección contra sobrecorriente de largo retardo (L) |                              |       |       |       |       |       |       |
| Protección contra sobrecorriente de corto retardo (S) | -                            | -     |       |       |       |       |       |
| Protección contra sobrecorriente instantánea (I)      |                              |       |       |       |       |       |       |
| Protección de defecto a tierra (G)                    | -                            | _     | -     | -     |       |       | -     |
| Protección de diferencial (E)                         | -                            | -     | -     | -     | -     | -     |       |
| Protección del neutro en interruptor<br>automático 4P |                              |       |       |       |       |       |       |



| Función                          | Unidad de control MicroLogic |       |       |       |       |       |       |
|----------------------------------|------------------------------|-------|-------|-------|-------|-------|-------|
|                                  | 2.0 A                        | 2.0 E | 5.0 A | 5.0 E | 6.0 A | 6.0 E | 7.0 A |
| Indicador LED de sobrecarga      |                              |       |       |       |       |       |       |
| Indicadores de causa del disparo |                              |       |       |       |       |       |       |

## Descripción



- A. Fijación superior
- B. Bloque de terminales para conexiones externas
- C. Compartimento para la batería
- D. Accesorio de precinto para la cubierta de protección
- E. Cubierta de protección
- F. Fijación inferior
- G. Código QR de la cubierta protectora para acceder a la información del producto
- H. Punto de apertura de la cubierta
- I. Tornillo para el conector de cálculo de largo retardo
- J. Conector de cálculo de largo retardo
- K. Enlace infrarrojo con interfaz de comunicación
- L. Conexión con el interruptor automático

#### Unidad de control MicroLogic 2.0 A



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo instantáneo
- C. Indicador LED de causa de disparo de protección automática
- D. Botón de rearme después de defecto y prueba de batería
- E. Pantalla digital
- F. Gráfico de barras y amperímetro trifásico
- G. Botón de desplazamiento del menú
- H. Indicador LED de sobrecarga
- I. Tornillo para el conector de cálculo de largo retardo
- J. Conector de prueba
- K. Botón de selección de menú
- L. Temporización de largo retardo tr
- M. Ajuste de corriente de largo retardo Ir
- N. Disparo instantáneo Isd

#### Unidad de control MicroLogic 2.0 E



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo instantáneo
- C. Indicador LED de causa de disparo de protección automática
- D. Botón de rearme después de defecto y prueba de batería
- E. Pantalla digital
- F. Gráfico de barras y amperímetro trifásico
- G. Botón de desplazamiento del menú
- H. Botón de navegación de Vista rápida
- I. Indicador LED de sobrecarga
- J. Tornillo para el conector de cálculo de largo retardo
- K. Conector de prueba
- L. Botón de selección de menú
- M. Temporización de largo retardo tr
- N. Ajuste de corriente de largo retardo Ir
- O. Disparo instantáneo Isd

#### Unidad de control MicroLogic 5.0 A



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo de corto retardo o instantáneo
- C. Indicador LED de causa de disparo de protección automática
- D. Botón de rearme después de defecto y prueba de batería
- E. Pantalla digital
- F. Gráfico de barras y amperímetro trifásico
- G. Botón de desplazamiento del menú
- H. Indicador LED de sobrecarga
- I. Tornillo para el conector de cálculo de largo retardo
- J. Conector de prueba
- K. Botón de selección de menú
- L. Temporización de largo retardo tr
- M. Ajuste de corriente de largo retardo Ir
- N. Disparo de corto retardo Isd
- O. Temporización de corto retardo tsd
- P. Disparo instantáneo li

#### Unidad de control MicroLogic 5.0 E



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo de corto retardo o instantáneo
- C. Indicador LED de causa de disparo de protección automática
- D. Botón de rearme después de defecto y prueba de batería
- E. Pantalla digital
- F. Gráfico de barras y amperímetro trifásico
- G. Botón de desplazamiento del menú
- H. Botón de navegación de Vista rápida
- I. Indicador LED de sobrecarga
- J. Tornillo para el conector de cálculo de largo retardo
- K. Conector de prueba
- L. Botón de selección de menú
- M. Temporización de largo retardo tr
- N. Ajuste de corriente de largo retardo Ir
- O. Disparo de corto retardo Isd
- P. Temporización de corto retardo tsd
- Q. Disparo instantáneo li

#### Unidad de control MicroLogic 6.0 A



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo de corto retardo o instantáneo
- C. Indicador LED de causa de disparo de defecto a tierra
- D. Indicador LED de causa de disparo de protección automática
- E. Botón de rearme después de defecto y prueba de batería
- F. Pantalla digital
- G. Gráfico de barras y amperímetro trifásico
- H. Botón de desplazamiento del menú
- I. Indicador LED de sobrecarga
- J. Tornillo para el conector de cálculo de largo retardo
- K. Botón de prueba para protección de defecto a tierra y diferencial
- L. Conector de prueba
- M. Botón de selección de menú
- N. Temporización de largo retardo tr
- O. Ajuste de corriente de largo retardo Ir
- P. Disparo de corto retardo Isd
- Q. Temporización de corto retardo tsd
- R. Disparo instantáneo li
- S. Disparo de defecto a tierra Ig
- T. Temporización de defecto a tierra tg

#### Unidad de control MicroLogic 6.0 E



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo de corto retardo o instantáneo
- C. Indicador LED de causa de disparo de defecto a tierra
- D. Indicador LED de causa de disparo de protección automática
- E. Botón de rearme después de defecto y prueba de batería
- F. Pantalla digital
- G. Gráfico de barras y amperímetro trifásico
- H. Botón de desplazamiento del menú
- I. Botón de navegación de Vista rápida
- J. Indicador LED de sobrecarga
- K. Tornillo para el conector de cálculo de largo retardo
- L. Botón de prueba para protección de defecto a tierra y diferencial
- M. Conector de prueba
- N. Botón de selección de menú
- O. Temporización de largo retardo tr
- P. Ajuste de corriente de largo retardo Ir
- Q. Disparo de corto retardo Isd
- R. Temporización de corto retardo tsd
- S. Disparo instantáneo li
- T. Disparo de defecto a tierra Ig
- U. Temporización de defecto a tierra tg

#### Unidad de control MicroLogic 7.0 A



- A. Indicador LED de causa de disparo de largo retardo
- B. Indicador LED de causa de disparo de corto retardo o instantáneo
- C. Indicador LED de causa de disparo de diferencial
- D. Indicador LED de causa de disparo de protección automática
- E. Botón de rearme después de defecto y prueba de batería
- F. Pantalla digital
- G. Gráfico de barras y amperímetro trifásico
- H. Botón de desplazamiento del menú
- I. Indicador LED de sobrecarga
- J. Tornillo para el conector de cálculo de largo retardo
- K. Botón de prueba para protección de defecto a tierra y diferencial
- L. Conector de prueba
- M. Botón de selección de menú
- N. Temporización de largo retardo tr
- O. Ajuste de corriente de largo retardo Ir
- P. Disparo de corto retardo Isd
- Q. Temporización de corto retardo tsd
- R. Disparo instantáneo li
- S. Disparo de diferencial  $I\Delta n$
- T. Temporización de diferencial  $\Delta t$

## Indicadores LED de señalización

#### Indicador LED de sobrecarga



- A. El indicador LED rojo indica la fase o fases con desbordamiento.
- B. Indicador LED de sobrecarga: indica que el ajuste de corriente de largo retardo Ir se ha desbordado.

#### Indicadores LED de corriente



Los indicadores LED de corriente de la parte frontal de la unidad de control muestran continuamente las corrientes medidas en las fases 1, 2 y 3 en forma de porcentaje del ajuste de corriente de largo retardo Ir.

#### Indicadores LED de causa del disparo

Las indicaciones de los cuatro indicadores LED de causa del disparo dependerán del tipo de unidad de control MicroLogic.

| Indicador LED        | Descripción                                                                                                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ki led le lest/reset | MicroLogic 2.0 A/E, 5.0 A/E, 6.0 A/E, 7.0 A: Disparo debido a protección de<br>largo retardo                                                                                            |
| tr 🎇 🔋   Ap 🔅        | <ul> <li>MicroLogic 2.0 A/E: Disparo debido a protección instantánea</li> <li>MicroLogic 5.0 A/E, 6.0 A/E, 7.0 A: Disparo debido a protección de corto retardo o instantánea</li> </ul> |

| Indicador LED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Descripción                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fr is a provide the station of the s | <ul> <li>MicroLogic 2.0 A/E, 5.0 A/E: Not applicable</li> <li>MicroLogic 6.0 A/E: Disparo debido a protección de defecto a tierra</li> <li>MicroLogic 7.0 A: Disparo debido a protección de diferencial</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MicroLogic 2.0 A/E, 5.0 A/E, 6.0 A/E, 7.0 A: Disparo debido a protección automática.                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | La función de protección automática (temperatura excesiva o cortocircuito<br>que supera la capacidad del interruptor automático) abre el interruptor<br>automático y enciende el indicador LED Ap.                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>NOTA:</b> Si el interruptor automático permanece cerrado y el indicador<br>LED Ap permanece encendido, póngase en contacto con su<br>representante de servicio local.                                           |

Cuando se activa, uno de los indicadores LED permanece encendido hasta que se restablece localmente.

#### NOTA:

- Una serie de causas simultáneas puede provocar un disparo. El indicador LED de la última causa de disparo desde el punto de vista cronológico es el único que permanece encendido.
- La batería mantiene las indicaciones de la causa del disparo. Si no hay ninguna indicación, compruebe la batería.

#### Restablecimiento de las indicaciones de causa del disparo

- 1. Determine por qué se disparó el interruptor. La indicación de la causa de disparo se mantiene hasta que se restablece en la unidad de control.
- 2. Pulse 🖤 para restablecer el indicador LED de causa del disparo.

Para obtener más información sobre el procedimiento para restablecer y cerrar el interruptor automático después de un disparo, consulte DOCA0221ES.*ComPacT NS - Interruptores automáticos y disyuntores - Guía del usuario.* 

## Página de inicio de Go2SE

#### Presentación

Al escanear el código QR de la parte frontal de un dispositivo ComPacT NS con un smartphone que disponga de un lector de códigos QR y de conexión a Internet, se muestra la página de inicio de Go2SE.

En la página de inicio se muestra información acerca del aparato, así como una lista de menús.

#### Descripción de la página de inicio

Es posible acceder a la página de inicio desde smartphones Android e iOS. Muestra la misma lista de menús con ligeras diferencias en la presentación.

En el siguiente ejemplo se muestra la página de inicio en un smartphone Android:



- A. Referencia comercial de la unidad de control MicroLogic
- B. Tipo de unidad de control MicroLogic
- C. Menús de la página de inicio. Consulte las siguientes descripciones de los menús para obtener más información.
- D. Aplicaciones que se pueden descargar

#### Características

Seleccionar este menú permite acceder a una hoja de datos del producto con información detallada sobre la unidad de control MicroLogic.

#### Documentación

Seleccionar este menú permite acceder a las publicaciones técnicas sobre ComPacT NS.

#### Aplicación mySchneider

Seleccionar esta aplicación permite acceder a la aplicación móvil Customer Care de Schneider Electric **mySchneider**, que se puede descargar en smartphones Android y iOS. Para conocer la compatibilidad de los smartphones, compruébela en la tienda de aplicaciones. La aplicación de atención al cliente ofrece instrucciones de autoservicio y acceso fácil a información y ayuda experta.

## Uso de la interfaz hombre-máquina de MicroLogic A/ E

#### Contenido de esta parte

| Modos de visualización de la HMI                          |    |
|-----------------------------------------------------------|----|
| Modo de Vista rápida de la unidad de control MicroLogic E | 23 |
| Modo de navegación de árbol                               | 29 |

## Modos de visualización de la HMI

#### Definiciones

- La unidad de control MicroLogic A dispone de un único modo de visualización, el modo de navegación de árbol, para acceder a los datos a través de una estructura de menús.
- La unidad de control MicroLogic E, por su parte, dispone de dos modos de visualización:
  - Modo de navegación de árbol para acceder a todos los datos por medio de una estructura de menús
  - Modo de Vista rápida para visualizar una selección de datos

#### Modo de navegación de árbol

En el modo de visualización de navegación de árbol, utilice los botones situados debajo de la pantalla para desplazarse por la estructura de menús. El modo de visualización de navegación de árbol presenta una sola red de menús, con valores de supervisión y ajustes de configuración editables.

Consulte Navegación con los botones del teclado, página 31 para obtener más información sobre cómo utilizar los botones del teclado para:

- Navegar por la estructura de menús
- Acceder a los ajustes y editarlos

Para obtener más información sobre la estructura de menús y los ajustes, consulte Modo de navegación de árbol, página 29.

#### Modo de Vista rápida

La unidad de control MicroLogic E también incluye un modo de Vista rápida. El modo de Vista rápida muestra hasta 10 pantallas automáticamente y de forma consecutiva, con una temporización configurable. Hay una función de anulación disponible que permite el desplazamiento manual.

La Vista rápida es el modo de visualización ajustado de fábrica de la unidad de control MicroLogic E.

Puede modificar las pantallas de Vista rápida definidas en la configuración predeterminada.

## Modo de Vista rápida de la unidad de control MicroLogic E

#### Contenido de este capítulo

| Presentación                       | 24 |
|------------------------------------|----|
| Uso de la Vista rápida             | 26 |
| Personalización de la Vista rápida | 27 |

### Presentación

La Vista rápida de las unidades de control MicroLogic E permite al operador ver rápidamente las mediciones eléctricas más importantes (corrientes, tensiones, potencia activa, energía) sin tener que tocar el teclado de la unidad de control.

Las pantallas se desplazan automáticamente de forma circular para que el operador pueda ver, de forma consecutiva, todas las mediciones eléctricas principales.

El gráfico de barras de corriente y el indicador LED de sobrecarga permanecen visibles en todo momento en el modo de Vista rápida.

### Descripciones de las pantallas de Vista rápida

La Vista rápida permite visualizar las pantallas definidas en:

- · La configuración de fábrica
- Una configuración personalizada

### Pantallas definidas en la configuración de fábrica

Las unidades de control MicroLogic E vienen con una configuración de Vista rápida de fábrica que incluye las 9 pantallas siguientes, mostradas en el orden indicado:

- 1. Corriente de fase 1/A
- 2. Corriente de fase 2/B
- 3. Corriente de fase 3/C
- 4. Tensión: de fase a neutro (V1N) o entre fases (V12)
- 5. Tensión: de fase a neutro (V2N) o entre fases (V23)
- 6. Tensión: de fase a neutro (V3N) o entre fases (V31)
- 7. Potencia activa total
- 8. Energía activa: parte de número entero (hasta 6 dígitos) en MWh
- 9. Energía activa: último dígito de la parte de número entero más 3 dígitos de la parte decimal

Para obtener más información sobre cómo definir las pantallas que se mostrarán en la Vista rápida, consulte Personalización de la Vista rápida, página 27.

Cada pantalla se muestra durante 2 s antes de ser sustituida por la siguiente de la lista. Esta duración se puede ajustar de 1 a 9 s en intervalos de 1 s. Para obtener más información, consulte Ajustes de medición, página 45.



### Uso de la Vista rápida

### Activación y desactivación de la Vista rápida

- La primera vez que se conecta, la unidad de control MicroLogic E activa automáticamente la Vista rápida y se desplaza por las pantallas configuradas de fábrica.
- Pulse brevemente (<1 s) para activar el modo de navegación de árbol clásico. Púlselo de nuevo brevemente (<1 s) para volver al modo de Vista rápida.
- Tanto en el modo de navegación de árbol como en el de Vista rápida, la primera pantalla que aparece es la pantalla 1. Sin embargo, en el modo de navegación de árbol, la pantalla finalmente cambia para mostrar la corriente instantánea de la fase más cargada.

### Control manual del desplazamiento de la Vista rápida

El desplazamiento automático de las pantallas de Vista rápida puede detenerse, por ejemplo, para mostrar una pantalla durante más de 2 s a fin de anotar las mediciones.



Púlselo brevemente (< 1 s) Detiene el desplazami pantalla actual durante ninguna otra acción

Detiene el desplazamiento y muestra la pantalla actual durante 20 s si no se realiza ninguna otra acción.

A continuación, podrá desplazarse manualmente, y consecutivamente, por cada una de las pantallas de Vista rápida.



Púlselo brevemente (< 1 s)

Muestra la pantalla siguiente durante 20 s si no se realiza ninguna otra acción.

### Regreso al desplazamiento automático

Una vez que transcurran 20 s sin que se realice ninguna acción, se vuelve a activar el desplazamiento automático.

# Eventos que provocan la interrupción del desplazamiento automático

El desplazamiento automático de las pantallas de Vista rápida también se ve interrumpido por los siguientes eventos:

- Disparo (interrumpido hasta que se pulsa 🖤 para restablecer el disparo)
- · Cambio en un ajuste de protección
- Prueba de la batería (mientras se pulsa el botón de prueba).

### Personalización de la Vista rápida

### Configuración de Vista rápida personalizada

La configuración de fábrica de Vista rápida incluye las nueve pantallas que se presentan en el tema detallado, página 24 correspondiente.

Es posible cambiar algunas o todas las pantallas de la configuración de fábrica, hasta un máximo de diez pantallas.

Si se eliminan todas las pantallas de la Vista rápida, pulsar Si brevemente no tendrá efecto alguno. La pantalla permanece en el modo de navegación de árbol.

#### Eliminación de una pantalla

Para eliminar una pantalla de la Vista rápida, siga estos pasos:

- Asegúrese de tener control manual del modo de Vista rápida y, si es necesario, pulse brevemente (< 1 s) para activar el desplazamiento automático y, a continuación, brevemente (< 1 s) para activar el control manual del modo de Vista rápida.
- Cuando aparezca la pantalla que desea eliminar, mantenga pulsado (> 4 s).
- 3. Cuando se muestre el mensaje **OK dEL**, significará que la pantalla se ha eliminado.



### Cómo añadir una pantalla

Para añadir una pantalla (seleccionada en el árbol de navegación), siga estos pasos:

- 1. Acceda al modo de navegación de árbol.
- 2. En este modo, visualice la pantalla que desea añadir, tal como se describe en Navegación de árbol, página 29.
- 3. Cuando aparezca la pantalla seleccionada, mantenga pulsado 🙆 (> 4 s).
- Cuando se muestre el mensaje OK Add, significará que la pantalla se ha añadido a la configuración de Vista rápida. La pantalla se coloca en la última posición de la Vista rápida.



**NOTA:** Si intenta añadir una pantalla a una configuración existente que ya dispone de diez pantallas, se mostrará el mensaje **QV full**.

## Modo de navegación de árbol

#### Contenido de este capítulo

| Presentación                                                            |    |
|-------------------------------------------------------------------------|----|
| Pantalla de menús de la unidad MicroLogic A                             | 32 |
| Pantalla de menús de la unidad MicroLogic E                             | 33 |
| Visualización de los ajustes de protección                              | 35 |
| Restablecimiento de los maxímetros de corriente                         |    |
| Visualización y restablecimiento de la energía activa total (MicroLogic |    |
| E)                                                                      | 37 |
| Visualización del historial de disparos (MicroLogic E)                  |    |
| Ajustes de la unidad MicroLogic A                                       | 41 |
| Ajustes de la unidad MicroLogic E                                       | 45 |
|                                                                         |    |

### Presentación

### Navegación de árbol

Cada unidad de control MicroLogic dispone de dos árboles de navegación:

- Un árbol de visualización para ver los valores y ajustes principales de la unidad de control
- Un árbol de ajuste para modificar la configuración.

Cada árbol se divide en varias ramas.

Cada rama proporciona acceso a valores o ajustes que dependen del tipo de unidad de control MicroLogic, por ejemplo:

- Mediciones (corriente instantánea, corriente media, corriente instantánea máxima, tensión, potencia, energía).
- Historial de disparos
- Pantalla de ajustes de protección
- Ajustes (para modificación de la comunicación, medición o los parámetros de salida).

Para obtener más información sobre las ramas del árbol:

- Para la unidad MicroLogic A, consulte Pantalla de menús de MicroLogic A, página 32.
- Para la unidad MicroLogic E, consulte Pantalla de menús de MicroLogic E, página 33.

### Pantalla predeterminada

En la pantalla predeterminada se muestra la corriente instantánea de la fase con mayor carga.

Ejemplo: La fase 1 es la más cargada.



### Navegación con los botones del teclado

| Botón          | Descripción                                                                                                                                                                                                                                                                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Menu           | <ul> <li>Pulse el botón del menú para:</li> <li>Desplazarse por las diferentes ramas de un árbol.</li> <li>Regresar a la pantalla de corriente instantánea I1 del árbol de visualización desde la última rama de un árbol.</li> <li>Validar y bloquear un ajuste de dos dígitos (MicroLogic E).</li> </ul> |
| >              | <ul> <li>Pulse brevemente el botón de flecha (&lt; 1 s) para desplazarse por las diferentes pantallas de una rama.</li> <li>Mantenga pulsado el botón de flecha (&gt; 4 s) para restablecer los valores máximos o para guardar los ajustes.</li> </ul>                                                     |
| Menu 📎         | Pulse a la vez los botones de menú y flecha para acceder al árbol de ajuste desde cualquier pantalla del árbol de visualización. Manténgalos pulsados (> 4 s).                                                                                                                                             |
| (MicroLogic E) | <ul> <li>Pulse este botón para</li> <li>Cambiar del modo de navegación de árbol al modo de Vista rápida.</li> <li>Desbloquear y acceder a los ajustes bloqueados.</li> <li>Desplazarse por los parámetros de ajuste.</li> </ul>                                                                            |

Si no pulsa ninguna tecla durante unos segundos, se mostrará la pantalla predeterminada.

### Información de la pantalla

Las posiciones de las flechas descendentes (una, dos o tres flechas) situadas debajo de la información que se muestra en la pantalla indican las fases en cuestión, tal como se muestra en las pantallas a continuación.



Corriente de 6 A en el neutro (flecha situada sobre la N).



Corriente de 360 A en la fase 1/A (flecha situada sobre 1/A).



Tensión de 380 V entre las fases 1/A y 2/B (flechas situadas sobre 1/A y 2/B).



Tensión de 220 V entre la fase 2/B y el neutro (flechas situadas sobre N y 2/B).



Potencia activa total de las 3 fases de 2556 MW (flechas situadas sobre las 3 fases).

## Pantalla de menús de la unidad MicroLogic A

El árbol de navegación de la unidad MicroLogic A está organizado en las siguientes ramas:

- Visualización
  - Medición
  - Ajustes de protección
- Ajustes
  - Ajustes de comunicación

En la siguiente tabla se muestran las pantallas del árbol de visualización de la unidad MicroLogic A.

| Ramas del árbol de<br>visualización                                                                                                                                                       | Pantallas                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Pantalla predeterminada                                                                                                                                                                   | Corriente instantánea de la fase más cargada                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Corrientes instantáneas                                                                                                                                                                   | <ul> <li>I1: Corriente instantánea en fase 1</li> <li>I2: Corriente instantánea en fase 2</li> <li>I3: Corriente instantánea en fase 3</li> <li>IN: Corriente instantánea en el neutro 1</li> <li>Ig: Corriente instantánea de defecto a tierra (MicroLogic 6.0 A)</li> <li>IΔn: Corriente de diferencial instantánea (MicroLogic 7.0 A)</li> </ul>                                                                                             |  |  |  |  |  |  |
| Maxímetros de corriente<br>instantánea<br>Para obtener información<br>sobre cómo restablecer los<br>maxímetros de corriente,<br>consulte el tema detallado,<br>página 37 correspondiente. | <ul> <li>I1 máx.: Corriente instantánea máxima en la fase 1</li> <li>I2 máx.: Corriente instantánea máxima en la fase 2</li> <li>I3 máx.: Corriente instantánea máxima en la fase 3</li> <li>IN máx.: Corriente instantánea máxima en el neutro <sup>1</sup></li> <li>Ig máx.: Corriente instantánea máxima de defecto a tierra (MicroLogic 6.0 A)</li> <li>IΔn máx.: Corriente instantánea máxima de diferencial (MicroLogic 7.0 A)</li> </ul> |  |  |  |  |  |  |
| Ajustes de protección                                                                                                                                                                     | Los ajustes de protección que se muestran dependen del modelo de la unidad de control MicroLogic A.<br>Para obtener más información, consulte Visualización de los ajustes de protección, página 35.                                                                                                                                                                                                                                            |  |  |  |  |  |  |

(1) Interruptores automáticos de cuatro polos y tres polos con sensor del neutro externo.

## En la siguiente tabla se muestran las pantallas del árbol de ajuste de la unidad MicroLogic A.

| Ramas del árbol de ajuste             | Pantallas                                                                         |  |  |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
| Ajustes de comunicación,<br>página 41 | <ul> <li>Dirección Modbus</li> <li>Velocidad de transmisión en baudios</li> </ul> |  |  |  |  |  |  |
|                                       | <ul> <li>Paridad</li> </ul>                                                       |  |  |  |  |  |  |
|                                       | Idioma                                                                            |  |  |  |  |  |  |

### Pantalla de menús de la unidad MicroLogic E

El árbol de navegación de la unidad MicroLogic E está organizado en las siguientes ramas:

- Visualización
  - Medición (corriente, tensión, potencia y energía activa intanstáneas y medias)
  - Historial de disparos
  - Ajustes de protección
- Ajustes
  - Ajustes de comunicación
  - Ajustes de medición
  - Ajustes de salida
  - Versión del software

En la siguiente tabla se muestran las pantallas del árbol de visualización de la unidad MicroLogic E.

| Ramas del árbol de visualización                                                                                                                                                              | Pantallas                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Pantalla predeterminada                                                                                                                                                                       | Corriente instantánea de la fase más cargada                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Corrientes instantáneas y medias                                                                                                                                                              | <ul> <li>I1: Corriente instantánea en fase 1</li> <li>I2: Corriente instantánea en fase 2</li> <li>I3: Corriente instantánea en fase 3</li> <li>IN: Corriente instantánea en el neutro <sup>1</sup></li> <li>Ig: Corriente instantánea de defecto a tierra (MicroLogic 6.0 E)</li> <li>I1: Corriente media en la fase 1</li> <li>I2: Corriente media en la fase 2</li> <li>I3: Corriente media en la fase 3</li> <li>IN: Corriente media en el neutro <sup>1</sup></li> </ul> |  |  |  |
| Maxímetros de corriente instantánea<br>Para obtener más información sobre el<br>restablecimiento de los maxímetros de corriente,<br>consulte el tema detallado, página 36<br>correspondiente. | <ul> <li>I1 máx.: Corriente instantánea máxima en la fase 1</li> <li>I2 máx.: Corriente instantánea máxima en la fase 2</li> <li>I3 máx.: Corriente instantánea máxima en la fase 3</li> <li>IN máx.: Corriente instantánea máxima en el neutro <sup>1</sup></li> <li>Ig máx.: Corriente instantánea máxima de defecto a tierra (MicroLogic 6.0 E)</li> </ul>                                                                                                                 |  |  |  |
| Tensiones                                                                                                                                                                                     | <ul> <li>V1N: Tensión entre fase y neutro (sistemas de 4 cables)</li> <li>V2N: Tensión entre fase y neutro (sistemas de 4 cables)</li> <li>V3N: Tensión entre fase y neutro (sistemas de 4 cables)</li> <li>V12: Tensión entre fases</li> <li>V23: Tensión entre fases</li> <li>V31: Tensión entre fases</li> </ul>                                                                                                                                                           |  |  |  |
| Potencia<br>Para obtener más información sobre cómo<br>configurar el signo de potencia, consulte el tema<br>detallado, página 45 correspondiente.                                             | <ul> <li>P: Potencia activa instantánea</li> <li>PF: Factor de potencia</li> <li>Q: Potencia reactiva instantánea</li> <li>S: Potencia aparente instantánea</li> <li>P: Potencia activa media</li> <li>La potencia activa se muestra de manera positiva o negativa en función del parámetro de signo de potencia.</li> </ul>                                                                                                                                                  |  |  |  |
| Energía activa<br>Para obtener más información sobre la<br>visualización y el restablecimiento de la energía<br>activa, consulte el tema detallado, página 37<br>correspondiente.             | <ul> <li>Ep se muestra en MWh en una o dos pantallas.</li> <li>Energía activa (parte de número entero)</li> <li>Energía activa (parte decimal [si procede])</li> </ul>                                                                                                                                                                                                                                                                                                        |  |  |  |
| Historial de disparos, pagina 39                                                                                                                                                              | En el historial de disparos se muestra la lista de los diez últimos disparos.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

| Ramas del árbol de visualización                                                          | Pantallas                                                                                           |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Ajustes de protección                                                                     | Los ajustes de protección que se muestran dependen del modelo de la unidad de control MicroLogic E. |  |  |  |
|                                                                                           | Para obtener más información, consulte Visualización de los ajustes de protección, página 35.       |  |  |  |
| (1) Interruptores automáticos de cuatro polos y tres polos con sensor del neutro externo. |                                                                                                     |  |  |  |

## En la siguiente tabla se muestran las pantallas del árbol de ajuste de la unidad MicroLogic E.

| Ramas del árbol de ajuste          | Pantallas                                                                       |  |  |
|------------------------------------|---------------------------------------------------------------------------------|--|--|
| Ajustes de comunicación, página 46 | Dirección Modbus                                                                |  |  |
|                                    | Velocidad de transmisión en baudios                                             |  |  |
|                                    | • Paridad                                                                       |  |  |
|                                    | • Idioma                                                                        |  |  |
| Ajustes de medición, página 45     | Intervalo para el cálculo de la potencia media                                  |  |  |
|                                    | Intervalo para el cálculo de la corriente media                                 |  |  |
|                                    | • Tipo de red (3 o 4 cables) y número de polos del interruptor automático (TC). |  |  |
|                                    | Signo de potencia                                                               |  |  |
|                                    | Duración de la visualización de Vista rápida                                    |  |  |
| Versión del software               | SW: versión del software instalada actualmente                                  |  |  |

## Visualización de los ajustes de protección

| Ajustes de<br>protección                      | Disponibilidad por tipo de unidad de<br>control MicroLogic |       |       |       | Acción                                                                                                                 | Visualización del ajuste (los<br>ejemplos mostrados son |
|-----------------------------------------------|------------------------------------------------------------|-------|-------|-------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
|                                               | 2.0 A                                                      | 5.0 A | 6.0 A | 7.0 A |                                                                                                                        | MicroLogic P)                                           |
|                                               | 2.0 E                                                      | 5.0 E | 6.0 E |       |                                                                                                                        |                                                         |
| Ajuste de<br>corriente de<br>largo retardo Ir |                                                            |       |       |       | Pulse <sup>Menu</sup> para seleccionar el menú<br>de <b>ajustes</b> .<br>El valor de Ir es el primero en<br>mostrarse. | IR :400                                                 |
| Temporización<br>de largo retardo<br>tr       |                                                            |       |       |       | Pulse Para visualizar el valor de tr.                                                                                  | FR Is                                                   |
| Disparo de corto<br>retardo Isd               | -                                                          |       |       |       | Pulse Para pasar al valor de Isd de corto retardo.                                                                     | 158 <b>2800</b>                                         |
| Temporización<br>de corto retardo<br>tsd      | _                                                          |       |       |       | Pulse Para pasar al valor de tsd.                                                                                      |                                                         |
| Disparo<br>instantáneo li                     | _                                                          |       |       |       | Pulse Para pasar al valor de li instantáneo.                                                                           | H OFÊ                                                   |
| Disparo de<br>defecto a tierra<br>Ig          | _                                                          | -     |       | -     | Pulse Para pasar al valor Ig                                                                                           | 16 <b>4Ô</b>                                            |
| Disparo de<br>diferencial l∆n                 | -                                                          | -     | -     |       | al valor de l∆n.                                                                                                       |                                                         |
| Temporización<br>de defecto a<br>tierra tg    | _                                                          | -     |       | -     | Pulse Para pasar al valor tg                                                                                           | ، <mark>005/0</mark> 6                                  |

| Ajustes de<br>protección           | Disponibilidad por tipo de unidad de<br>control MicroLogic |       |       | nidad de | Acción                                   | Visualización del ajuste (los<br>ejemplos mostrados son |  |
|------------------------------------|------------------------------------------------------------|-------|-------|----------|------------------------------------------|---------------------------------------------------------|--|
|                                    | 2.0 A                                                      | 5.0 A | 6.0 A | 7.0 A    |                                          | MicroLogic P)                                           |  |
|                                    | 2.0 E                                                      | 5.0 E | 6.0 E |          |                                          |                                                         |  |
| Temporización<br>de diferencial Δt | -                                                          | -     | _     |          | al valor de Δt.                          | <b>∆⊦ 0:00</b> s                                        |  |
|                                    |                                                            |       |       |          | Pulse para volver al principio del menú. | IR :400                                                 |  |

## Restablecimiento de los maxímetros de corriente

1. Seleccione el valor máximo de corriente que desea restablecer (por ejemplo,

I2 máx.). Para ello, pulse las veces necesarias para acceder a la pantalla del valor máximo de I2.



2. Para restablecer el valor, mantenga pulsado durante 3 o 4 segundos. El valor anterior cambia al valor actual (el nuevo valor máximo).



3. Seleccione otro valor de corriente para restablecerlo o regrese al menú principal. Para ello, pulse las veces necesarias para seleccionar otro valor máximo para restablecer o regresar al menú principal.
# Visualización y restablecimiento de la energía activa total (MicroLogic E)

### Visualización de la energía activa total

La energía activa total (Ep) consumida desde que se conecta la unidad MicroLogic E se muestra en una o dos pantallas:

- En la primera pantalla, se muestra la parte de número entero de la energía total en MWh.
- En la segunda pantalla, se muestra la parte decimal de la energía total en MWh.

#### Ejemplo: visualización de Ep = 26,233 MWh (26 233 kWh)

Visualización de la parte de número entero de la energía total en MWh (hasta 6 dígitos)

Visualización de la parte decimal de la energía total en MWh (hasta 3 dígitos después del decimal precedido por el último dígito de la parte de número entero)





Pulse para ir a la pantalla de la parte decimal.

Pulse para ir a la pantalla de la parte de número entero.

La energía activa total (Ep) se calcula y muestra en números positivos, independientemente del valor del signo de potencia del parámetro. La energía activa total máxima que puede mostrarse es de 999 999 999 MWh. Si la energía activa total sigue aumentando, el valor mostrado permanece en 999 999 999 MWh.

# Restablecimiento de la energía activa total

1. Pulse las veces necesarias para acceder a la pantalla de energía activa total, en la que se muestra la parte de número entero de la energía activa total.



2. Para restablecer el valor, mantenga pulsado durante 3 o 4 segundos. Al soltar el botón, el valor anterior cambia al nuevo valor (comenzando por 0).



3. Pulse <sup>Menu</sup> para regresar al menú principal.

# Visualización del historial de disparos (MicroLogic E)

### Introducción

En el historial de disparos de la unidad MicroLogic E se muestra la lista de los 10 últimos disparos.

Para cada disparo, se registran y muestran las siguientes indicaciones en tres pantallas:

- Causa del disparo
- Fecha del disparo
- · Hora del disparo

**Ejemplo:** Visualización del primer (más reciente) de los cinco disparos registrados en el historial de disparos.



Ir: causa del disparo

 $\underline{4}$ : símbolo que indica la pantalla del historial de disparos

1: número de disparo (1 es el más reciente)

5: número total de disparos registrados

Para visualizar el historial de disparos:

1. Pulse Para desplazarse por las tres pantallas de cada disparo.



En este ejemplo, el disparo más reciente registrado en el historial de disparos es un disparo provocado por la protección de largo retardo que se produjo el 3 de enero de 2022 a las 12:34 y 56 s.

2. Pulse de nuevo para ver el siguiente disparo del historial.



### Lista de pantallas de disparo para posibles causas

| Causa       | Descripción                       | La pantalla muestra        |
|-------------|-----------------------------------|----------------------------|
| Disparo Ir  | Protección de largo retardo       | IR :S                      |
| Disparo Isd | Protección de corto retardo       | <b>85 8</b> 2              |
| Disparo li  | Protección instantánea            | ISd <b>3S</b><br>≰         |
| Disparo Ig  | Protección de defecto a<br>tierra | 16 <b>ЧS</b><br>≰          |
| Disparo Ap  | Protección automática             | <mark>8₽ <b>5.5</b></mark> |

**NOTA:** Los disparos de protección instantánea (li) se indican en la pantalla del historial de disparos de la misma manera que los disparos de protección de corto retardo (lsd). Ambos son causados por cortocircuitos.

### Fecha y hora del disparo

Para cada pantalla del historial de disparos, la unidad de control MicroLogic E muestra la fecha y la hora del disparo. Cada vez que se conecte la tensión de control de 24 V CC, se reiniciará la fecha y la hora a partir del 1 de enero de 2000.

El ajuste de la fecha y hora de la unidad de control MicroLogic E requiere la opción de comunicación. La fecha y hora de la unidad MicroLogic E se pueden ajustar manualmente de una de las siguientes maneras:

- Mediante el módulo de pantalla frontal FDM121
- Mediante el envío de un comando de ajuste a través de la red de comunicación

La fecha y la hora de la unidad MicroLogic E se pueden actualizar automáticamente:

- Mediante la interfaz IFE Ethernet, siempre que se den las siguientes condiciones:
  - La interfaz Ethernet está configurada en modo SNTP.
  - La interfaz Ethernet recibe una solicitud de actualización de fecha y hora del servidor SNTP.
- Con la interfaz IFM Modbus-SL al recibir una solicitud de actualización de fecha y hora del servidor SNTP

# Ajustes de la unidad MicroLogic A

### Ajustes de comunicación

Si está instalado el módulo de comunicación BCM ULP, es necesario establecer los ajustes de comunicación.

Los parámetros de comunicación tienen valores predeterminados que pueden o deben cambiarse según las necesidades de la instalación o de los usuarios.

En la siguiente tabla se enumeran los parámetros de comunicación y se indican sus posibles valores.

| Parámetro                                 | Definición                                                                                                                                         | Formato (X =<br>dígito) | Valor<br>predeterminado<br>(unidades) | Pantalla de valor<br>predeterminado | Valores posibles            |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|-------------------------------------|-----------------------------|
| Dirección<br>Modbus                       | Dirección Modbus única de la<br>unidad de control MicroLogic A<br>en la red Modbus a la que está<br>conectada.                                     | ХХ                      | 47                                    | Вача                                | Entre 1 y 47                |
| Velocidad de<br>transmisión en<br>baudios | Número de kbits/s (kbaudios)<br>intercambiados en la red<br>Modbus. Debe ajustarse con el<br>mismo valor para todos los<br>dispositivos de la red. | XX,X                    | 19,2 (kb)                             | <b>6 19.2</b>                       | 9,6/19,2                    |
| Paridad                                   | Se utiliza para comprobar<br>errores en función del número<br>de bits del grupo de datos<br>transmitidos.                                          | Eon                     | E                                     | ΡΕ                                  | E (Par)<br>n (ninguna)      |
| Idioma                                    | ldioma de trabajo para las<br>pantallas                                                                                                            | En o Fr                 | En                                    | En                                  | En (inglés)<br>Fr (francés) |

Para obtener más información sobre la instalación y configuración del módulo de comunicación BCM ULP, consulte la siguiente hoja de instrucciones en el sitio web de Schneider Electric: 5100512864A

### Procedimiento de ajuste de la unidad de control MicroLogic A

- Pulse brevemente para desplazarse por los ajustes posibles de un parámetro determinado.
- Mantenga pulsado Para guardar el ajuste y pasar al siguiente parámetro.
- Después de seleccionar el idioma, mantenga pulsado para volver al menú de medición.

1. En el menú de **medición**, pulse a la vez los dos botones para acceder a los ajustes de parámetros de la opción de comunicación.



2. Seleccione la dirección Modbus deseada.



3. Mantenga pulsado el botón para guardar el ajuste y pasar al siguiente parámetro.



4. Seleccione la velocidad de transmisión en baudios deseada.



5. Mantenga pulsado el botón para guardar el ajuste y pasar al siguiente parámetro.



6. Seleccione el ajuste de paridad deseado.



7. Mantenga pulsado el botón para guardar el ajuste y pasar al siguiente parámetro.



8. Seleccione el idioma deseado.



9. Mantenga pulsado el botón para regresar al menú de **medición**.



# Ajustes de la unidad MicroLogic E

## Ajustes

La unidad de control MicroLogic E presenta dos tipos de ajustes:

- Ajustes de medición
- Ajustes de comunicación (opcionales)

Los parámetros correspondientes (tipo de red o signo de potencia, por ejemplo) tienen valores predeterminados que pueden o deben cambiarse según las necesidades de la instalación o de los usuarios.

En las tablas siguientes se enumeran estos parámetros y se indican sus posibles valores. Los parámetros se muestran en el orden que se indica en las tablas siguientes.

## Ajustes de medición

| Parámetro                                                                                       | Definición                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formato (X =<br>dígito) | Valor<br>predeterminado<br>(unidades) | Pantalla<br>predeterminada | Valores posibles                                |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|----------------------------|-------------------------------------------------|
| Intervalo para el<br>cálculo de la<br>potencia media                                            | Período durante el cual se<br>calcula la potencia media.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | XX                      | 15 (minutos)                          |                            | Entre 5 y 60<br>(en incrementos<br>de 1 minuto) |
| Intervalo para el<br>cálculo de la<br>corriente media                                           | Período durante el cual se<br>calcula la corriente media.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XX                      | 15 (minutos)                          |                            | Entre 5 y 60<br>(en incrementos<br>de 1 minuto) |
| Tipo de red (3 o<br>4 cables) y<br>número de<br>polos del<br>interruptor<br>automático<br>(TC). | <ul> <li>Ajuste 43 = 4 cables (3f<br/>+N) e IA de 3 polos (3 TC)</li> <li>Ajuste 44 = 4 cables (3f<br/>+N) e IA de 4 polos (4 TC)<br/>o 3 polos (3 TC) + TC<br/>externo</li> <li>Ajuste 33 = 3 cables (3f) e<br/>IA de 3 polos (3 TC)</li> <li>NOTA: En el caso de<br/>los interruptores<br/>automáticos de 3<br/>polos que se utilicen<br/>en sistemas de 3<br/>cables (neutro no<br/>distribuido),<br/>establezca siempre<br/>este valor en 33 para<br/>evitar que se indique<br/>una tensión entre fase<br/>y neutro irrelevante.</li> </ul> | ХХ                      | 43                                    | NUL 43 cF                  | 43<br>44<br>33                                  |
| Signo de<br>potencia                                                                            | De manera predeterminada, la<br>unidad de control MicroLogic E<br>considera positiva la potencia<br>que fluye hacia el interruptor<br>automático a través de los<br>terminales superiores para las<br>cargas conectadas a los<br>terminales inferiores<br>(alimentación superior).                                                                                                                                                                                                                                                              | + 0                     | +                                     | <u>ρ</u> +<br>             | +                                               |
| Duración de la<br>visualización de<br>Vista rápida                                              | Duración de la visualización de<br>cada pantalla en el modo de<br>Vista rápida                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x                       | 2 (s)                                 | 0 <u>=</u> 2 .             | Entre 1 y 9                                     |

### Ajustes de comunicación

Si está instalado el módulo de comunicación BCM ULP, es necesario establecer los ajustes de comunicación.

El módulo de comunicación solo puede configurarse después de la instalación. La modificación de un ajuste en un sistema que ya está en funcionamiento puede provocar una pérdida de comunicación.

| Parámetro                                 | Definición                                                                                                | Formato (X =<br>dígito) | Valor<br>predeterminado<br>(unidades) | Pantalla<br>predeterminada | Valores posibles       |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|----------------------------|------------------------|
| Dirección<br>Modbus                       | Dirección Modbus de la unidad<br>MicroLogic E en la red Modbus a<br>la que está conectada.                | XX                      | 47                                    | Вача                       | Entre 1 y 47           |
| Velocidad de<br>transmisión en<br>baudios | Número de kbits/s (kbaudios)<br>intercambiados en la red<br>Modbus.                                       | XX.X                    | 19,2 (kb)                             | 6 192                      | 9,6/19,2               |
| Paridad                                   | Se utiliza para comprobar<br>errores en función del número<br>de bits del grupo de datos<br>transmitidos. | Eon                     | E                                     | PE                         | E (Par)<br>n (ninguna) |
| Conexión<br>Modbus                        | Tipo de conexión Modbus:<br>4 cables (4) o 2 cables + ULP<br>(ULP)                                        | 4 o ULP                 | 4                                     | Mo 4                       | 4<br>ULP               |

Para obtener más información sobre la instalación y configuración del módulo de comunicación BCM ULP, consulte la siguiente hoja de instrucciones en el sitio web de Schneider Electric: 5100512864A

### Procedimiento de ajuste de la unidad MicroLogic E

Los parámetros se dividen en dos ramas del árbol de navegación:

- · Ajustes de medición
- Ajustes de comunicación

Siga este procedimiento para modificar los ajustes. Después del procedimiento, se proporcionan ejemplos de ajustes de salida y dirección Modbus.

- 1. Para acceder a la primera pantalla de la rama de ajustes de comunicación,
  - mantenga pulsados a la vez (cuatro segundos) Merru y . Se muestra el valor actual. El icono de candado cerrado indica que el ajuste está bloqueado.
- Para desbloquear y acceder al ajuste que se va a cambiar, pulse para abrir el candado. El ajuste que se va a cambiar (o el primer dígito) parpadeará para indicar que está listo para modificarse.
- Pulse para seleccionar el nuevo ajuste. Los ajustes posibles se desplazan en bucle. Con cada pulsación, se pasa al siguiente ajuste o a la siguiente opción del bucle.
- 4. Pulse para confirmar el nuevo ajuste. Deja de parpadear y se muestra un candado cerrado.

En el caso de un ajuste de dos dígitos, esta operación permite ajustar el primer dígito, y el segundo parpadea para indicar que está listo para modificarse. Proceda del modo indicado anteriormente para cambiarlo, es

decir, pulse para modificar el segundo dígito y, a continuación, para confirmarlo. El dígito deja de parpadear y se muestra un candado cerrado. El nuevo ajuste está bloqueado.

5. Pulse para pasar a la pantalla del siguiente parámetro de la rama de ajustes de comunicación.

Para pasar a la siguiente rama (ajustes de medición), pulse

**NOTA:** En cualquiera de las ramas, los diferentes parámetros se organizan formando un bucle. Para volver al mismo parámetro, es necesario

desplazarse por todos los parámetros de la rama mediante 🎴. Para acceder

a la siguiente rama de configuración (o salir de la última rama), pulse 400

### Ejemplo: Configuración de la dirección Modbus

La dirección Modbus es un número de dos dígitos que identifica la unidad de control MicroLogic E en una red Modbus.

1. En el menú de **medición**, pulse a la vez we y durante cuatro segundos para acceder a la pantalla de ajuste de la dirección Modbus.

Se mostrará la dirección existente (dirección predeterminada 47 o XX). El icono de candado cerrado indica que el valor está bloqueado.



2. Pulse para desbloquear y acceder al primer dígito. Parpadeará para indicar que está listo para modificarse.



3. Para modificar el primer dígito, pulse repetidamente hasta que aparezca el nuevo valor para el primer dígito. Puede desplazarse por todos los valores posibles en bucle.



4. Para confirmar el primer dígito y acceder al segundo, pulse . Se mostrará el segundo dígito. El primer dígito dejará de parpadear y el segundo dígito comenzará a parpadear para indicar que está listo para modificarse.



5. Para modificar el segundo dígito, pulse repetidamente hasta que aparezca el nuevo valor para el segundo dígito. Al igual que sucede para el primer dígito, puede desplazarse por todos los valores posibles en bucle.



6. Para confirmar y bloquear el nuevo ajuste, pulse . El segundo dígito deja de parpadear y se muestra un candado cerrado. El nuevo ajuste está bloqueado.



**NOTA:** La dirección máxima es 47. Si intenta configurar una dirección superior, la unidad de control MicroLogic ajustará la dirección en 47.

7. Para mostrar la siguiente pantalla de ajuste, pulse de nuevo . Accederá al siguiente parámetro.



# Ajustes de protección para la unidad de control MicroLogic A/E

#### Contenido de esta parte

| Procedimiento de ajuste                   | 51       |
|-------------------------------------------|----------|
| Ajuste de la unidad de control MicroLogic | 2.0A/E52 |
| Ajuste de la unidad de control MicroLogic | 5.0A/E53 |
| Ajuste de la unidad de control MicroLogic | 6.0A/E54 |
| Ajuste de la unidad de control MicroLogic | 7.0A56   |
| Ajuste de la protección del neutro        |          |

# Procedimiento de ajuste

1. Abra la cubierta de protección.



- 2. Realice los ajustes necesarios mediante los reguladores. El valor de ajuste se muestra automáticamente en la pantalla en forma de valor absoluto con las unidades correspondientes:
  - Corriente en amperios (A y kA).
  - Temporizaciones en segundos.



Si no se muestra ninguna información, consulte Pantalla de la unidad MicroLogic, página 89.

- 3. Si no se realiza ninguna otra acción, la pantalla volverá al menú principal para las mediciones de corriente transcurridos unos segundos.
- 4. Cierre la cubierta de protección y, si es necesario, instale un precinto para proteger los ajustes.



# Ajuste de la unidad de control MicroLogic 2.0A/E



Puede ajustar la curva de disparo de su unidad de control MicroLogic 2.0A/E para que se adapte a las necesidades de su instalación mediante los siguientes parámetros:

- 1. Ajuste de corriente Ir (largo retardo)
- 2. Temporización tr (largo retardo) para 6 x Ir
- 3. Disparo Isd (instantáneo)

#### Establecer los valores de umbral

En este ejemplo, la corriente nominal In del interruptor automático es de 2000 A.





#### Establecer la temporización

En este ejemplo, la temporización tr del interruptor automático es de 1 segundo.





# Ajuste de la unidad de control MicroLogic 5.0A/E



Puede ajustar la curva de disparo de su unidad de control MicroLogic 5.0A/E para que se adapte a las necesidades de su instalación mediante los siguientes parámetros:

- 1. Ajuste de corriente Ir (largo retardo)
- 2. Temporización tr (largo retardo) para 6 x Ir
- 3. Disparo Isd (corto retardo)
- 4. Temporización tsd (corto retardo)
- 5. Disparo li (instantáneo)

#### Establecer los valores de umbral

En este ejemplo, la corriente nominal In del interruptor automático es de 2000 A.



 $Ir = 0,7 \times In = 1400 \text{ A}$   $Isd = 2 \times Ir = 2800 \text{ A}$   $Ii = 3 \times In = 6000 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$   $t = 0,7 \times In = 1400 \text{ A}$ 

#### **Establecer las temporizaciones**

En este ejemplo, la temporización tr del interruptor automático es de 1 segundo y la temporización tsd es de 0,2 segundos.



# Ajuste de la unidad de control MicroLogic 6.0A/E



Puede ajustar la curva de disparo de su unidad de control MicroLogic 6.0A/E para que se adapte a las necesidades de su instalación mediante los siguientes parámetros:

- 1. Ajuste de corriente lr (largo retardo)
- 2. Temporización tr (largo retardo) para 6 x Ir
- 3. Disparo Isd (corto retardo)
- 4. Temporización tsd (corto retardo)
- 5. Disparo li (instantáneo)
- 6. Disparo Ig (defecto a tierra)
- 7. Temporización tg (defecto a tierra)

#### Establecer los valores de umbral

En este ejemplo, la corriente nominal In del interruptor automático es de 2000 A.



Ir = 0,7 x In = 1400 A Isd =2 x Ir = 2800 A Ii = 3 x In = 6000 A

Ig = 640 A



Curva I<sup>2</sup>tON

0

lr

Curva I<sup>2</sup>tOFF





0

### Establecer las temporizaciones

En este ejemplo, la temporización tr del interruptor automático es de 1 segundo, la temporización tsd es de 0,2 segundos y la temporización tg es de 0,2 segundos.





# Ajuste de la unidad de control MicroLogic 7.0A



Puede ajustar la curva de disparo de su unidad de control MicroLogic 7.0A para que se adapte a las necesidades de su instalación mediante los siguientes parámetros:

- 1. Ajuste de corriente Ir (largo retardo)
- 2. Temporización tr (largo retardo) para 6 x Ir
- 3. Disparo Isd (corto retardo)
- 4. Temporización tsd (corto retardo)
- 5. Disparo li (instantáneo)
- 6. Disparo I∆n (diferencial)
- 7. Temporización Δt (diferencial)

#### Establecer los valores de umbral

En este ejemplo, la corriente nominal In del interruptor automático es de 2000 A.



Ir = 0.7 x In = 1400 AIsd =2 x Ir = 2800 A

li = 3 x ln = 6000 A

l∆n = 1 A



Curva l<sup>2</sup>tON

Λ





### Establecer las temporizaciones

En este ejemplo, la temporización tr del interruptor automático es de 1 segundo, la temporización ts<br/>d es de 0,2 segundos y la temporización  $\Delta t$  es de 140 milisegundos.





# Ajuste de la protección del neutro

En los interruptores automáticos de cuatro polos, es posible seleccionar el tipo de protección del neutro para el cuarto polo mediante el regulador de tres posiciones del interruptor automático ComPacT NS:

- Neutro sin protección (4P 3D)
  - **NOTA:** Con el ajuste 4P 3D, la corriente en el neutro no debe exceder la corriente nominal del interruptor automático.
- Protección del neutro a 0,5 ln (3D + N/2, ajuste de fábrica)
- Protección del neutro en In (4P 4D)



A. Cubierta para el regulador de tres posiciones de protección del neutro.

Siga estos pasos para establecer el tipo de protección del neutro.

1. Retire la cubierta del interruptor.



2. Seleccione el tipo de protección.



3. Vuelva a colocar la cubierta en su sitio.



# Funciones de protección de la unidad de control MicroLogic A/E

#### Contenido de esta parte

| Protección de largo retardo                                             | 61 |
|-------------------------------------------------------------------------|----|
| Protección de corto retardo                                             | 62 |
| Protección instantánea                                                  | 63 |
| Protección de defecto a tierra en la unidad de control MicroLogic 6.0A/ |    |
| Ε                                                                       | 64 |
| Protección de diferencial en la unidad de control MicroLogic 7.0A       | 65 |
| Protección del neutro                                                   | 66 |

# Protección de largo retardo

La función de protección de largo retardo protege los cables (fases y neutro) de las sobrecargas. Esta función se basa en mediciones rms reales.

#### Memoria térmica

La memoria térmica, página 93 representa de manera continua la cantidad de calor en los cables, antes y después del disparo, independientemente del valor de corriente (presencia de sobrecarga o no). La memoria térmica, página 93 optimiza la función de protección de largo retardo del interruptor automático al representar el aumento de temperatura en los cables. La memoria térmica, página 93 sobreentiende un tiempo de enfriamiento del cable de unos 15 minutos.

### Ajuste del disparo Ir

Los valores de ajuste del disparo Ir dependen del conector de cálculo de largo retardo insertado en la unidad de control MicroLogic A/E. Para obtener más información, consulte Conector de cálculo de largo retardo, página 83.

Disparo Ir = valor de ajuste x corriente nominal In.

Las unidades de control vienen equipadas de serie con un conector de cálculo estándar (0,4-1 x ln).

| Conector de cálculo       | Ajuste de                                                                                   | Ajuste de corriente |      |      |      |      |      |      |     |  |
|---------------------------|---------------------------------------------------------------------------------------------|---------------------|------|------|------|------|------|------|-----|--|
| Estándar                  | 0,4                                                                                         | 0,5                 | 0,6  | 0,7  | 0,8  | 0,9  | 0,95 | 0,98 | 1   |  |
| Opción de ajuste bajo     | 0,4                                                                                         | 0,45                | 0,50 | 0,55 | 0,60 | 0,65 | 0,70 | 0,75 | 0,8 |  |
| Opción de ajuste alto     | 0,80                                                                                        | 0,82                | 0,85 | 0,88 | 0,90 | 0,92 | 0,95 | 0,98 | 1   |  |
| Conector de desactivación | ación Sin protección contra sobrecorriente de largo retardo (Ir = In para el ajuste de Isd) |                     |      |      |      |      |      |      |     |  |

**NOTA:** El conector de cálculo de largo retardo debe retirarse siempre, página 83 antes de realizar las pruebas de aislamiento o resistencia dieléctrica.

Cuando la corriente es superior a lsd o li, solo estarán operativas la protección contra sobrecorriente de corto retardo y la protección instantánea.

#### Ajuste de la temporización tr

Los ajustes de temporización indicados en los conectores de cálculo corresponden a los tiempos de disparo de una sobrecarga de 6 × Ir en condiciones de estado frío.

| En la siguiente tabla se muestran los tiempos de disparo en función de la |  |
|---------------------------------------------------------------------------|--|
| temporización tr.                                                         |  |

| Tiempo de disparo (s)      | Precisión          | Temporización tr |      |      |     |     |     |     |      |      |
|----------------------------|--------------------|------------------|------|------|-----|-----|-----|-----|------|------|
|                            |                    | 0,5              | 1    | 2    | 4   | 8   | 12  | 16  | 20   | 24   |
| Cuando se alcanza 1,5 × Ir | Entre 0 y<br>-30 % | 12,5             | 25   | 50   | 100 | 200 | 300 | 400 | 500  | 600  |
| Cuando se alcanza 6 × Ir   | Entre 0 y<br>-20 % | 0,5              | 1    | 2    | 4   | 8   | 12  | 16  | 20   | 24   |
| Cuando se alcanza 7,2 × Ir | Entre 0 y<br>-20 % | 0,34             | 0,69 | 1,38 | 2,7 | 5,5 | 8,3 | 11  | 13,8 | 16,6 |

# Protección de corto retardo

- La función de protección contra cortocircuitos ayuda a proteger el sistema de distribución contra cortocircuitos impedantes.
- La temporización de corto retardo puede utilizarse para garantizar la selectividad con un interruptor automático aguas abajo.
- Esta función permite realizar mediciones rms reales.
- Las opciones l<sup>2</sup>tON y l<sup>2</sup>tOFF mejoran la selectividad con dispositivos de protección aguas abajo.
- Uso de curvas l<sup>2</sup>t con protección de corto retardo:
  - l<sup>2</sup>tOFF seleccionado: la función de protección implementa una curva de tiempo constante;
  - I<sup>2</sup>tON seleccionado: la función de protección implementa una curva de tiempo inverso l<sup>2</sup>t de hasta 10Ir. Por encima de 10Ir, la curva de tiempo es constante.
- Enclavamiento selectivo de zona (ZSI).

Las funciones de protección de cortocircuito y de defecto a tierra habilitan la selectividad temporal al retrasar los dispositivos aguas arriba para proporcionar a los dispositivos aguas abajo el tiempo requerido para eliminar el defecto. El enclavamiento selectivo de zona permite obtener la selectividad total entre interruptores por medio del cableado externo.

Para conocer las características y el cableado externo de la función de enclavamiento selectivo de zona, consulte Enclavamiento selectivo de zona (ZSI), página 86.

#### Disparo de corto retardo Isd

| Disparo (precisión ± 10 | lsd = lr x | 1,5 | 2 | 2,5 | 3 | 4 | 5 | 6 | 8 | 10 |
|-------------------------|------------|-----|---|-----|---|---|---|---|---|----|
| %)                      |            |     |   |     |   |   |   |   |   |    |

#### Temporización tsd

| Temporización tsd (s)                                | I²t OFF                      | 0  | 0,1 | 0,2 | 0,3 | 0,4 |
|------------------------------------------------------|------------------------------|----|-----|-----|-----|-----|
|                                                      | I²t ON                       | -  | 0,1 | 0,2 | 0,3 | 0,4 |
| Tiempo de disparo a 10<br>x lr (ms) con l²t ON o l²t | Tiempo máximo<br>reiniciable | 20 | 80  | 140 | 230 | 350 |
|                                                      | Tiempo máximo de<br>corte    | 80 | 140 | 200 | 320 | 500 |

# Protección instantánea

 La función de protección instantánea ayuda a proteger el sistema de distribución contra cortocircuitos sólidos. A diferencia de la función de protección de corto retardo, la temporización de la protección instantánea no es ajustable.

La orden de disparo se envía al interruptor automático en cuanto la corriente supera el valor establecido, con una temporización fija de 20 milisegundos.

• Esta función permite realizar mediciones rms reales.

#### Disparo instantáneo

| MicroLogic 2.0 A/E           | Disparo            | lsd = lr x | 1,5 | 2 | 2,5 | 3 | 4 | 5  | 6  | 8  | 10  |
|------------------------------|--------------------|------------|-----|---|-----|---|---|----|----|----|-----|
|                              | (precisión ± 10 %) |            |     |   |     |   |   |    |    |    |     |
| MicroLogic 5.0 A/E, 6.0 A/E, | Disparo            | li = ln x  | 2   | 3 | 4   | 6 | 8 | 10 | 12 | 15 | OFF |
| 7.0 A                        | (precisión ± 10 %) |            |     |   |     |   |   |    |    |    |     |

# Protección de defecto a tierra en la unidad de control MicroLogic 6.0A/E

 Un defecto a tierra en los conductores de protección puede provocar un aumento local de la temperatura en el emplazamiento del defecto o en los conductores.

El propósito de la función de protección de defecto a tierra es precisamente eliminar este tipo de defecto.

• Existen dos tipos de protección de defecto a tierra, en función del tipo de instalación.

| Тіро                                                 | Descripción                                                                                                                                                                                   |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Residual                                             | <ul> <li>La función determina la corriente de secuencia de fase<br/>cero, es decir, la suma vectorial de las corrientes de fase y<br/>del neutro.</li> </ul>                                  |
|                                                      | <ul> <li>Detecta defectos a tierra aguas abajo del interruptor<br/>automático.</li> </ul>                                                                                                     |
| Source Ground Return<br>(retorno a tierra de fuente) | <ul> <li>Mediante un sensor externo especial, esta función mide<br/>directamente la corriente de defecto que regresa al<br/>transformador a través del cable de conexión a tierra.</li> </ul> |
|                                                      | <ul> <li>Detecta defectos a tierra tanto aguas arriba como aguas<br/>abajo del interruptor automático.</li> </ul>                                                                             |
|                                                      | <ul> <li>La distancia máxima entre el sensor y el interruptor<br/>automático es de 10 m (33 pies).</li> </ul>                                                                                 |

- Las protecciones de defecto a tierra y neutro son independientes y, por lo tanto, se pueden combinar.
- Enclavamiento selectivo de zona (ZSI).

Las funciones de protección de cortocircuito y de defecto a tierra habilitan la selectividad temporal al retrasar los dispositivos aguas arriba para proporcionar a los dispositivos aguas abajo el tiempo requerido para eliminar el defecto. El enclavamiento selectivo de zona permite obtener la selectividad total entre interruptores por medio del cableado externo.

Para conocer las características y el cableado externo de la función de enclavamiento selectivo de zona, consulte Enclavamiento selectivo de zona (ZSI), página 86.

### Disparo de defecto a tierra Ig

| Disparo Ig            | In ≤ 400 A          | lg = ln x     | А     | В     | С     | D     | E     | F     | G      | Н      | I      |
|-----------------------|---------------------|---------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|
| (precision<br>± 10 %) |                     |               | 0,3   | 0,3   | 0,4   | 0,5   | 0,6   | 0,7   | 0,8    | 0,9    | 1      |
|                       | 400 A < In ≤ 1200 A | lg = ln x<br> | 0,2   | 0,3   | 0,4   | 0,5   | 0,6   | 0,7   | 0,8    | 0,9    | 1      |
|                       | In > 1200 A         | lg =          | 500 A | 640 A | 720 A | 800 A | 880 A | 960 A | 1040 A | 1120 A | 1200 A |

### Temporización tg

| Temporización tg (s)                   | I²t OFF                   | 0  | 0,1 | 0,2 | 0,3 | 0,4 |
|----------------------------------------|---------------------------|----|-----|-----|-----|-----|
|                                        | I²t ON                    | _  | 0,1 | 0,2 | 0,3 | 0,4 |
| Tiempo de disparo (ms) en ln o a 1200A | Tiempo máximo reiniciable | 20 | 80  | 140 | 230 | 350 |
|                                        | Tiempo máximo de corte    | 80 | 140 | 200 | 320 | 500 |

# Protección de diferencial en la unidad de control MicroLogic 7.0A

- La función de protección de diferencial protege principalmente a las personas contra el contacto indirecto, ya que una corriente de diferencial puede provocar un aumento en el potencial de las piezas conductoras expuestas.
- El valor de disparo de diferencial lΔn se muestra directamente en amperios, mientras que la temporización sigue una curva de tiempo constante.
- · Se requiere un sensor rectangular externo para esta función.
- Esta función no funcionará si no está instalado el conector de cálculo de largo retardo.
- Con el tipo CA, el interruptor automático está protegido contra disparos imprevistos.
- Con el tipo A, el interruptor automático proporciona una resistencia de componente de CC de hasta 10 A.

#### Valor de disparo de diferencial IAn

|  | Disparo I∆n (A) (precisión del 0 al -20 %) | 0,5 | 1 | 2 | 3 | 5 | 7 | 10 | 20 | 30 |
|--|--------------------------------------------|-----|---|---|---|---|---|----|----|----|
|--|--------------------------------------------|-----|---|---|---|---|---|----|----|----|

### Temporización Δt

| Ajustes de temporización Δt (ms) | 60  | 140 | 230 | 350 | 800  |
|----------------------------------|-----|-----|-----|-----|------|
| (tiempo máximo reiniciable)      |     |     |     |     |      |
| Tiempo máximo de corte ∆t (ms)   | 140 | 200 | 320 | 500 | 1000 |

# Protección del neutro

# Protección del conductor neutro en interruptores automáticos de cuatro polos

La protección del conductor neutro depende del sistema de distribución. Existen tres opciones.

| Tipo de neutro                            | Descripción                                                                                                                        |  |  |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Neutro sin protección                     | El sistema de distribución no requiere protección del conductor neutro.                                                            |  |  |  |  |
| Protección media del neutro (a<br>0.5In)  | La sección transversal del conductor del neutro es la mitad que<br>la de los conductores de fase.                                  |  |  |  |  |
|                                           | <ul> <li>El ajuste de corriente de largo retardo lr para el neutro es<br/>igual a la mitad del valor de ajuste.</li> </ul>         |  |  |  |  |
|                                           | <ul> <li>El disparo de corto retardo Isd para el neutro es igual a la<br/>mitad del valor de ajuste.</li> </ul>                    |  |  |  |  |
|                                           | <ul> <li>El disparo instantáneo Isd (MicroLogic 2.0A/E) del<br/>neutro es igual a la mitad del valor de ajuste.</li> </ul>         |  |  |  |  |
|                                           | <ul> <li>El disparo instantáneo li (MicroLogic 5.0 A/E / 6.0A/E /<br/>7.0A) para el neutro es igual al valor de ajuste.</li> </ul> |  |  |  |  |
| Protección completa del neutro<br>(en ln) | La sección transversal del conductor del neutro es la mitad que<br>la de los conductores de fase.                                  |  |  |  |  |
|                                           | <ul> <li>El ajuste de corriente de largo retardo lr para el neutro es<br/>igual al valor de ajuste.</li> </ul>                     |  |  |  |  |
|                                           | <ul> <li>El disparo de corto retardo Isd para el neutro es igual al<br/>valor de ajuste.</li> </ul>                                |  |  |  |  |
|                                           | <ul> <li>Los disparos instantáneos lsd y li del neutro son iguales<br/>al valor de ajuste.</li> </ul>                              |  |  |  |  |

### Protección del neutro para dispositivos tripolares

La protección del neutro no está disponible en dispositivos tripolares.

# Otras funciones de la unidad de control MicroLogic A/E

#### Contenido de esta parte

| Mediciones                                                 | 68 |
|------------------------------------------------------------|----|
| Historial de disparos de la unidad de control MicroLogic E | 71 |
| Función de comunicación                                    | 72 |

### **Mediciones**

### Opciones de medición y visualización

MicroLogic A La unidad de control mide las corrientes instantáneas y almacena los valores máximos en maxímetros.

MicroLogic E La unidad de control mide los mismos valores que la unidad de control MicroLogic A, más los valores de tensión, potencia y energía.

Las mediciones de la unidad de control MicroLogic A/E pueden mostrarse en:

- La pantalla de la unidad de control (consulte el tema detallado, página 32 de la unidad de control MicroLogic A, consulte el tema detallado, página 33 de la unidad de control MicroLogic E)
- Un módulo de pantalla frontal opcional FDM121
- Un PC, a través de la opción de comunicación Modbus (COM) (consulte el tema detallado, página 72 correspondiente).

En la siguiente tabla se indican las mediciones y opciones de visualización de la unidad de control MicroLogic A/E.

| Mediciones                                                                      | Micro-  | Micro-  | Se muestra en: |        |     |  |  |
|---------------------------------------------------------------------------------|---------|---------|----------------|--------|-----|--|--|
|                                                                                 | Logic A | LOGIC E | MicroLogic     | FDM121 | СОМ |  |  |
| Corrientes instantáneas I1, I2, I3, IN,<br>Ig, I∆n                              |         |         |                |        |     |  |  |
| Maxímetros de corriente l1max,<br>l2max, l3max, lNmax, lgmax, l∆nmax            |         |         |                |        |     |  |  |
| Corriente media II, I2, I3, IN                                                  | -       |         |                |        |     |  |  |
| Maxímetros de corriente media<br>(media pico) I1 max, I2 max, I3 max,<br>IN max | _       |         | _              |        |     |  |  |
| Tensiones entre fases V12, V23, V31<br>(sistemas de 3 y 4 cables)               | -       |         |                |        |     |  |  |
| Tensiones de fase a neutro V1N,<br>V2N, V3N (sistemas de 4 cables)              | -       |         |                |        |     |  |  |
| Tensión media Vavg                                                              | -       |         | -              |        |     |  |  |
| Desequilibrio de tensión Vunbal                                                 | -       |         | -              |        |     |  |  |
| Potencias instantáneas P, Q, S                                                  | -       |         |                |        |     |  |  |
| Maxímetros de potencia Pmax,<br>Qmax, Smax                                      | -       |         | -              |        |     |  |  |
| Potencia activa media P                                                         | -       |         |                |        |     |  |  |
| Potencia aparente media $\overline{S}$                                          | -       |         | -              |        |     |  |  |
| Maxí <u>metro</u> de potencia media (media pico) Pmax                           | -       |         | -              |        |     |  |  |
| Factor de potencia instantánea PF                                               | -       |         |                |        |     |  |  |
| Energía activa Ep                                                               | -       |         |                |        |     |  |  |
| Energía reactiva y aparente Eq, Es                                              | -       |         | -              |        |     |  |  |

Si no se muestra ninguna información en la pantalla, consulte Pantalla de la unidad MicroLogic, página 89.

#### NOTA:

- Las corrientes instantáneas I1, I2 e I3 también se muestran mediante indicadores LED en la parte frontal de la unidad MicroLogic, página 18.
- La pantalla de la corriente del neutro (IN) está disponible con la unidad de control MicroLogic E cuando el parámetro de tipo de red se ha ajustado en 4 cables 4ct (44), página 45.
- Con los interruptores automáticos de 3 polos utilizados en sistemas de 4 cables (3 fases + neutro), el terminal VN de la unidad de control MicroLogic siempre debe estar conectado al neutro. De lo contrario, las mediciones de tensión entre fase y neutro podrían ser erróneas.

#### **Definiciones de mediciones**

| Medición                 | Definición                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Corriente instantánea    | Valor rms de la corriente instantánea.                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Corriente del neutro     | Disponible con un interruptor automático de cuatro polos o de tres polos con sensor del neutro externo.                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Maxímetro de corriente   | Valor máximo de la corriente instantánea (se actualiza cada<br>500 ms) desde la instalación o el último restablecimiento de la<br>unidad MicroLogic.                                                                                                                                                                                                                                 |  |  |  |  |  |
| Corriente media          | Media de todos los valores de corriente instantánea durante un intervalo de tiempo determinado que puede ajustar el usuario (por ejemplo, 10 minutos).                                                                                                                                                                                                                               |  |  |  |  |  |
|                          | Para obtener más información, consulte Cálculo de valores de media, página 94.                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Tensión                  | Valor rms (eficaz) de la tensión.                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Tensión media            | Media de las 3 tensiones entre fases V12, V23 y V31:                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                          | $Vavg = \frac{V12 + V23 + V31}{3}$                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Desequilibrio de tensión | Desequilibrio de tensión en la fase más desequilibrada. Se<br>muestra en forma de porcentaje de Vavg.<br>$v_{avg} = \underbrace{E \text{ max}}_{0 \text{ V12} \text{ V23 V31}}$<br>MicroLogic ELa unidad de control mide la diferencia máxima<br>entre la tensión instantánea de cada fase y Vavg, y calcula el<br>desequilibrio de tensión:<br>Vunbal = $\frac{ E \text{ max} }{3}$ |  |  |  |  |  |
| Potencia instantánea     | P: potencia activa total<br>Q: potencia reactiva total<br>S: potencia aparente total<br>P, Q y S son valores instantáneos rms.                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Maxímetro de potencia    | Valor máximo de la potencia instantánea (se actualiza cada segundo) desde la instalación o el último restablecimiento de la unidad MicroLogic.                                                                                                                                                                                                                                       |  |  |  |  |  |
| Potencia media           | Media de todos los valores de potencia instantánea durante un<br>intervalo de tiempo determinado que puede ajustar el usuario<br>(por ejemplo, 10 min).                                                                                                                                                                                                                              |  |  |  |  |  |
|                          | Para obtener más información, consulte Cálculo de valores de<br>media, página 94.                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

| Medición                             | Definición                 |
|--------------------------------------|----------------------------|
| Factor de potencia instantánea<br>PF | PF = P / S                 |
| Energía total                        | Ep: energía activa total   |
|                                      | Eq: energía reactiva total |
|                                      | Es: energía aparente total |

# Historial de disparos de la unidad de control MicroLogic E

El historial de disparos de las unidades de control MicroLogic E permite analizar los disparos de los interruptores automáticos para aumentar de esta forma la disponibilidad general de su instalación.

En el historial de disparos, se muestra la lista de los 10 últimos disparos.

Para cada disparo, se registran y muestran las siguientes indicaciones:

- La causa del disparo: Disparos de Ir, Isd, Ii, Ig o de protección automática (Ap)
- La fecha y la hora del disparo (requiere opción de comunicación) para establecer la fecha y la hora

Lista de causas de disparo:

- · Sobrecargas (Ir)
- Cortocircuitos (Isd o Ii)
- Defectos a tierra (lg)
- Protección automática (Ap)

Para obtener más información, consulte Visualización del historial de disparos, página 39.

# Función de comunicación

### Opción de comunicación Modbus

La opción de comunicación Modbus permite que un interruptor automático ComPacT NS se conecte a un supervisor o a cualquier otro dispositivo con un canal de comunicación Modbus maestro.

La opción de comunicación Modbus consta del módulo de comunicación del interruptor automático BCM ULP, instalado detrás de la unidad de control MicroLogic.

Con la opción de comunicación, el interruptor automático ComPacT NS se puede conectar a las redes siguientes:

- Una red de línea serie RS-485 con protocolo Modbus a través de una interfaz IFM Modbus-SL para un interruptor automático
- Una red Ethernet con protocolo Modbus TCP/IP a través de una interfaz IFE Ethernet para un interruptor automático o un servidor de panel IFE Ethernet

Para obtener más información, consulte DOCA0220ES ComPacT NS - Guía de comunicación Modbus.

### Arquitectura de comunicación



- A. Módulo de pantalla frontal FDM121 para un interruptor automático
- B. Aplicación de entrada/salida IO
- C. Pantalla FDM128 Ethernet para ocho aparatos
- D. Interfaz IFE
- E. Interruptor automático ComPacT NS
- F. Unidad de control MicroLogic
- G. Módulo de comunicación del interruptor automático BCM ULP (instalado en el interruptor automático ComPacT NS)
- H. Página de inicio de Go2SE
### Mantenimiento de la unidad de control MicroLogic A/ E

#### Contenido de esta parte

| Comprobación y sustitución de la batería interna                        | 74 |
|-------------------------------------------------------------------------|----|
| Prueba de las funciones de protección de defecto a tierra y diferencial | 77 |
| Prueba de la unidad de control MicroLogic                               | 78 |

La unidad de control MicroLogic A/E se puede cambiar in situ. Para obtener más información, póngase en contacto con su representante de servicio local.

# Comprobación y sustitución de la batería interna

### Comprobación de la batería interna de la unidad MicroLogic A



Mantenga pulsado en la unidad de control para comprobar los indicadores LED de causa de disparo y la batería. La información de la batería se muestra si la unidad de disparo está equipada con una fuente de alimentación externa o si el interruptor automático está encendido.





Sustituya la batería

**NOTA:** Si no aparece ninguna información en la pantalla, compruebe que haya una batería instalada en la unidad de control o conecte una fuente de alimentación auxiliar. Para obtener más información sobre fuentes de alimentación, consulte Pantalla de la unidad MicroLogic, página 89.

#### Comprobación de la batería interna de la unidad MicroLogic E



Mantenga pulsado 🖤 en la unidad de control para comprobar los indicadores LED de causa de disparo y la batería. La información de la batería se muestra si la unidad de disparo está equipada con una fuente de alimentación externa o si el interruptor automático está encendido.

El nivel de carga de la batería se muestra en forma de porcentaje (100 %, 80 %, 60 %, 40 %, 20 % o 0 %).

**NOTA:** Si no aparece ninguna información en la pantalla, compruebe que haya una batería instalada en la unidad de control o conecte una fuente de alimentación auxiliar. Para obtener más información sobre fuentes de alimentación, consulte Pantalla de la unidad MicroLogic, página 89.

#### Batería interna

Si es necesario cambiar la batería de la unidad MicroLogic A/E, solicite una batería nueva en la cubierta de su carcasa con el número de catálogo de Schneider Electric **33593**.

- Batería de litio
- 1/2 AA, 3,6 V, 900 mA/h
- Temperatura ambiente: de -55 °C a 130 °C (de -67 °F a 266 °F)

### Sustitución de la batería interna

### **A A PELIGRO**

#### RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- Utilice el equipo de protección personal (PPE) adecuado y siga las recomendaciones para el trabajo seguro con dispositivos eléctricos. Consulte NFPA 70E, CSA Z462, NOM 029-STPS o las normas locales equivalentes.
- La instalación y el mantenimiento de este equipo solo deberá realizarlos personal eléctrico cualificado.
- Desconecte toda la alimentación suministrada a este equipo antes de trabajar en él.
- Utilice siempre un voltímetro adecuado para confirmar que el aparato está apagado.
- Vuelva a colocar todos los aparatos, puertas y tapas antes de conectar la alimentación de este equipo.
- Preste atención a los posibles riesgos e inspeccione cuidadosamente el área de trabajo para comprobar que no se hayan dejado herramientas ni objetos en el interior del equipo.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

Siga este procedimiento para sustituir la batería interna:

- 1. Retire la cubierta frontal del interruptor automático tal como se indica en la hoja de instrucciones de dicho interruptor.
- 2. Retire la batería y la cubierta de la carcasa. Para ello, inserte la hoja de un destornillador de pequeño tamaño en la muesca de la cubierta de la carcasa de la batería y gírela para deslizar la cubierta y extraerla de la unidad de control.



3. Coloque la nueva batería y vuelva a colocar la cubierta de la carcasa en su sitio.



4. Pulse 🔮 para comprobar la nueva batería.

5. Vuelva a colocar la cubierta frontal del interruptor automático tal como se indica en la hoja de instrucciones del mismo.

### **A A PELIGRO**

RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- Vuelva a colocar la cubierta frontal del interruptor automático antes de conectar la alimentación del interruptor para evitar el acceso a los terminales con corriente.
- Procure que los cables no queden atrapados cuando vuelva a colocar la cubierta frontal.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.

# Prueba de las funciones de protección de defecto a tierra y diferencial

Siga estos pasos para probar:

- La protección de defecto a tierra en unidades de control MicroLogic 6.0 A/E.
- La protección de diferencial en unidades de control MicroLogic 7.0 A.
- 1. Compruebe que el interruptor automático está cerrado.
- 2. Utilice un destornillador fino para pulsar brevemente (< 1 s) el botón **TEST** de la parte frontal de la unidad de control MicroLogic.



- 3. El interruptor automático se dispara.
- 4. Si el interruptor automático no se dispara, póngase en contacto con su representante de servicio local.

# Prueba de la unidad de control MicroLogic

Pruebe la unidad de control con el software EcoStruxure Power Commission instalado en un PC y conectado a la unidad de control MicroLogic a través de la Service Interface.

#### Arquitectura de prueba



- A. Fuente de alimentación de CA/CC
- B. Cable de 7 pins para unidades de control ComPacT NS
- C. Cable USB con imán

Para obtener más información, consulte GDE78167 Service Interface - Hoja de instrucciones.

#### Funciones de prueba con el software EcoStruxure Power Commission

El software EcoStruxure Power Commission permite realizar las siguientes acciones en una unidad de control MicroLogic con la que exista comunicación a través de la Service Interface:

- Pruebas de curva de disparo automático
- Comprobación del dispositivo (prueba de forzar disparo)
- Prueba del enclavamiento selectivo de zona (ZSI)
- · Preparación para las pruebas de inyección primaria

Para obtener más información, consulte DOCA0170ES Service Interface - Guía del usuario.

# Apéndice técnico

#### Contenido de esta parte

| 81 |
|----|
| 83 |
| 86 |
| 89 |
| 90 |
| 93 |
| 94 |
| 96 |
|    |

# Curvas de disparo



### Protección de largo retardo e instantánea (MicroLogic 2.0A/E)

Protección de largo retardo, corto retardo e instantánea (MicroLogic 5.0A/ E, 6.0 A/E y 7.0 A)



### Protección de defecto a tierra (MicroLogic 6.0A/E)



# Conector de cálculo de largo retardo

Para obtener una mayor precisión de la protección de largo retardo, página 61, se puede utilizar uno de los cuatro conectores de cálculo de largo retardo intercambiables para limitar el rango de ajuste de disparo de largo retardo.

#### Selección del conector de cálculo de largo retardo

En la siguiente tabla, se enumeran los conectores de cálculo disponibles:

| Número de referencia | Rango de ajuste del valor de Ir                                                       |              |  |
|----------------------|---------------------------------------------------------------------------------------|--------------|--|
| C33542               | Estándar                                                                              | 0,4-1 × lr   |  |
| C33543               | Ajuste bajo                                                                           | 0,4-0,8 × lr |  |
| C33544               | Ajuste alto                                                                           | 0,8-1 × lr   |  |
| C33545               | Sin protección de largo retardo Ir = In para el ajuste de protección de corto retardo |              |  |

**NOTA:** Si no se ha instalado ningún conector de cálculo de largo retardo, la unidad de control sigue funcionando en las siguientes condiciones degradadas:

- El ajuste de corriente de largo retardo lr es 0,4.
- La temporización de largo retardo tr corresponde al valor que indica el regulador de ajuste.
- · La función de protección de diferencial está desactivada.

#### Procedimiento de sustitución

### **A A PELIGRO**

#### RIESGO DE DESCARGA ELÉCTRICA, EXPLOSIÓN O ARCO ELÉCTRICO

- Utilice el equipo de protección personal (PPE) adecuado y siga las recomendaciones para el trabajo seguro con dispositivos eléctricos. Consulte NFPA 70E, CSA Z462, NOM 029-STPS o las normas locales equivalentes.
- La instalación y el mantenimiento de este equipo solo deberá realizarlos personal eléctrico cualificado.
- Desconecte toda la alimentación suministrada a este equipo antes de trabajar en él.
- Utilice siempre un voltímetro adecuado para confirmar que el aparato está apagado.
- Vuelva a colocar todos los aparatos, puertas y tapas antes de conectar la alimentación de este equipo.
- Preste atención a los posibles riesgos e inspeccione cuidadosamente el área de trabajo para comprobar que no se hayan dejado herramientas ni objetos en el interior del equipo.

Si no se siguen estas instrucciones, se producirán lesiones graves o la muerte.



#### **RIESGO DE DETERIORO DE LA UNIDAD DE CONTROL**

Antes de realizar pruebas de rigidez dieléctrica, es obligatorio:

- Retirar el conector de cálculo de largo retardo de la unidad de control MicroLogic E.
- Desconectar todos los equipos auxiliares eléctricos (por ejemplo, bobinas de disparo MX o MN) conectados al dispositivo.

Si no se siguen estas instrucciones, pueden producirse daños en el equipo.

Siga este procedimiento para sustituir o retirar el conector de cálculo:

- 1. Abra el interruptor automático.
- 2. Abra la cubierta de protección de la unidad de control.



- 3. Registre los ajustes del interruptor.
- 4. Desenrosque el tornillo de montaje del conector de cálculo de largo retardo.



5. Retire el conector de cálculo ajustable.



- 6. Inspeccione el área de montaje para verificar que no haya suciedad ni contaminación.
- 7. Retire el conector de cálculo de repuesto.
- 8. Empuje suavemente el conector de cálculo de repuesto para introducirlo.



- 9. Apriete el tornillo de montaje del conector de cálculo de largo retardo.
- 10. Establezca los ajustes de la unidad de control en los valores registrados anteriormente o bien modifique los ajustes.

# Enclavamiento selectivo de zona (ZSI)

### Presentación

El enclavamiento selectivo de zona (ZSI), también llamado restricción de zona, es un sistema diseñado para reducir la tensión de equipos de distribución eléctrica en situaciones de cortocircuito o defecto a tierra.

ZSI funciona con un sistema de distribución precoordinado que limita la tensión en el sistema mediante la reducción del tiempo necesario para solucionar el fallo eléctrico, a la vez que mantiene la coordinación del sistema entre los aparatos de protección contra sobrecorriente y defecto a tierra.

El ZSI permite que las unidades de control MicroLogic se comuniquen entre sí de manera que el interruptor automático aguas arriba más cercano pueda aislar o eliminar un cortocircuito o defecto a tierra sin temporización intencionada. Los aparatos de las demás zonas del sistema (incluidos los situados aguas arriba) permanecen cerrados para mantener el servicio a las cargas que no han quedado afectadas.

Sin ZSI, el sistema coordinado funciona de manera que el interruptor automático más próximo al fallo eléctrico es el que se encarga de solucionar dicho fallo, aunque por lo general con algún retardo intencionado. Con ZSI, el aparato más próximo al fallo eléctrico ignora los retardos de corta duración y de defecto a tierra preajustados y soluciona el fallo eléctrico sin ningún retardo intencionado.

El enclavamiento selectivo de zona elimina el retardo intencionado sin que por ello se vea afectada la coordinación, lo que se traduce en tiempos de disparo más rápidos. De este modo se limita la tensión en el sistema, ya que se reduce la cantidad de energía de paso a la que se ve expuesto el sistema durante una sobrecorriente.

Es necesario coordinar el sistema correctamente para que el enclavamiento selectivo de zona funcione.

#### Principio de funcionamiento

Un cable piloto interconecta varios interruptores automáticos equipados con unidades de control MicroLogic, tal como se muestra en el siguiente diagrama.

La unidad de control que detecta un fallo eléctrico envía una señal aguas arriba y comprueba si llega una señal de aguas abajo. Si llega señal proveniente de aguas abajo, el interruptor automático permanece cerrado durante todo el período de su temporización. Si no llega ninguna señal proveniente de aguas abajo, el interruptor automático se abre inmediatamente, independientemente del ajuste de temporización existente.

• Se produce un fallo eléctrico en el punto A.

El dispositivo aguas abajo (2) elimina el fallo eléctrico y envía una señal al dispositivo aguas arriba (1), que mantiene la temporización de corto retardo tsd o la temporización de defecto a tierra tg que tiene ajustada.

Se produce un fallo eléctrico en el punto B.

El dispositivo aguas arriba (1) detecta el fallo eléctrico. En ausencia de señal procedente de un dispositivo aguas abajo, la temporización ajustada no se tiene en cuenta y el dispositivo se dispara de acuerdo con el ajuste cero. Si se conecta a un dispositivo más alejado aguas arriba, envía una señal a ese dispositivo, lo que retrasa el disparo según su configuración de tsd o tg.



**NOTA:** En el dispositivo (1), las temporizaciones tsd y tg no deben ajustarse a cero porque, al hacerlo, imposibilitarían la selectividad.

#### Conexiones entre unidades de control

Se puede utilizar una señal lógica (0 o 5 V) para el enclavamiento selectivo de zona entre los interruptores automáticos aguas arriba y aguas abajo equipados con:

- MicroLogic 5.0 A, 6.0 A, 7.0 A.
- MicroLogic 5.0 E, 6.0 E.
- MicroLogic 5.0 P, 6.0 P, 7.0 P.
- MicroLogic 5.0 H, 6.0 H, 7.0 H.

Hay una interfaz disponible para la conexión a generaciones anteriores de las unidades de control.

#### Cableado

Características técnicas de los cables:

- Impedancia máxima: 2,7 Ω / 300 m (1000 pies)
- Capacidad de los conectores: De 0,4 a 2,5 mm<sup>2</sup> (AWG 22 a 14)
- · Cables: un único conductor o multiconductor
- Longitud máxima: 3000 m (10 000 pies)
- · Límites a la interconexión de dispositivos:
  - El común ZSI OUT (Z1) y la salida ZSI OUT (Z2) pueden conectarse a un máximo de 10 dispositivos aguas arriba.
  - Se puede conectar un máximo de 100 dispositivos aguas abajo al común ZSI - IN (Z3) y a una entrada ZSI - IN CR (Z4) o GF (Z5).

**NOTA:** Los terminales Z1 a Z5 corresponden a las indicaciones idénticas de los bloques de terminales del interruptor automático.

**NOTA:** Si la función de protección no se utiliza en interruptores automáticos equipados para la protección de ZSI, será necesario instalar un puente en los terminales cortos Z3, Z4 y Z5. Si no se instala el puente, las temporizaciones de cortocircuito y de defecto a tierra se ajustarán a cero independientemente de la posición del regulador de ajuste.

#### Prueba

Compruebe el cableado y el funcionamiento del enclavamiento selectivo de zona entre varios interruptores automáticos. Para ello, utilice el software EcoStruxure Power Commission instalado en un PC y conectado a la unidad de control MicroLogic a través de la Service Interface.

Para obtener más información, consulte Prueba de la unidad de control MicroLogic A/E, página 78.

### Pantalla de MicroLogic

#### Presentación

La pantalla de la unidad MicroLogic funciona sin fuente de alimentación externa.

La pantalla se apaga si la corriente cae por debajo de  $0,2 \times \ln (\ln = \text{corriente nominal})$ .

Se puede utilizar una fuente de alimentación externa de 24 Vdc opcional para mantener la visualización de las corrientes aunque la corriente caiga por debajo de 0,2 x ln.

Para obtener más información sobre la conexión de una fuente de alimentación externa, consulte los esquemas eléctricos de DOCA0221ES.*ComPacT NS - Interruptores automáticos y disyuntores - Guía del usuario.* 

#### Retroiluminación y maxímetro

La retroiluminación de la pantalla se desactiva en las siguientes situaciones:

- Corriente inferior a 1 x In en una fase
- Corriente inferior a 0,4 x In en dos fases
- Corriente inferior a 0,2 x In en tres fases

El maxímetro no funciona para corrientes inferiores a 0,2 x In.

**NOTA:** Sin importar la corriente, la retroiluminación de la pantalla y el maxímetro se pueden mantener añadiendo una fuente de alimentación externa de 24 V CC.

### Fuente de alimentación

#### Fuentes de alimentación internas y externas

La unidad de control MicroLogic se alimenta por la corriente que fluye a través de los transformadores de corriente interna (TC).

- Las funciones de protección estándar de las unidades de control MicroLogic funcionan con la alimentación de corriente interna.
- Si la corriente de carga es superior al 20% de la corriente nominal In, la alimentación de corriente interna proporcionará la fuente de alimentación para el funcionamiento completo de la unidad de control MicroLogic. Esto incluye:
  - La HMI, la pantalla y los indicadores LED de la unidad MicroLogic
  - Las funciones de medición

Para proporcionar una fuente de alimentación a la unidad de control MicroLogic cuando la carga está por debajo del 20% de la corriente nominal In y mantener el funcionamiento completo de la unidad de control MicroLogic, se puede utilizar una fuente de alimentación externa permanente de 24 V CC.

#### Fuente de alimentación externa de 24 V CC

La fuente de alimentación de 24 V CC mantiene el funcionamiento todas las funciones de la unidad de control MicroLogic en cualquier circunstancia, incluso cuando el interruptor automático está abierto y no recibe alimentación.

La fuente de alimentación de 24 V CC mantiene las funciones de la unidad de control MicroLogic en condiciones de carga baja (carga por debajo del 20%).

### **AVISO**

#### PÉRDIDA DE DOBLE AISLAMIENTO

- Alimente la unidad de control MicroLogic solo con una fuente de alimentación MBTS (muy baja tensión de seguridad) de 24 V CC, conectada a los terminales F1-/F2+. Preste atención a la polaridad.
- No conecte dispositivos que tengan doble aislamiento a la fuente de alimentación MBTS de 24 V CC que se esté utilizando para alimentar la unidad de control MicroLogic. Por ejemplo, no utilice la misma fuente de alimentación MBTS de 24 V CC para alimentar una unidad de control MicroLogic para interruptores automáticos ComPacT NS y una unidad de control MicroLogic X para interruptores automáticos MasterPact MTZ.

Si no se siguen estas instrucciones, se obtendrá un sistema aislado básico/único.

### AVISO

#### **RIESGO DE DAÑOS EN EL EQUIPO**

- No utilice la misma fuente de alimentación MBTS de 24 V CC para alimentar la unidad de control MicroLogic y los otros módulos ULP conectados al módulo BCM ULP.
- No utilice la misma fuente de alimentación MBTS de 24 V CC para alimentar más de una unidad de control MicroLogic.

### Si no se siguen estas instrucciones, pueden producirse daños en el equipo.

Recomendaciones para el uso de fuentes de alimentación externas MBTS de 24 V CC:

- Utilice fuentes de alimentación de 24 V CC separadas para alimentar cada una de las unidades de control MicroLogic. Puede utilizar la misma fuente de alimentación de 24 V CC para alimentar los módulos ULP en varias unidades funcionales inteligentes (IMU).
- Utilice una fuente de alimentación de 24 V CC separada para alimentar las bobinas de disparo MN o MX.

#### Fuente de alimentación de 24 V CC recomendada

Se recomienda la siguiente fuente de alimentación de 24 V CC para su uso con dispositivos ComPacT NS. Para obtener más información, consulte el *Catálogo de ComPacT NS*.

| Característica                                                                       | Fuente de alimentación AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ilustración                                                                          | Company and a co |  |
| Categoría de sobretensión<br>definida por IEC 60947-1                                | <ul> <li>Category IV según la norma IEC 62477-1 (modelo de V CA)</li> <li>Category III según la norma IEC 62477-1 (modelo de V CC)</li> <li>Category III según la norma UL 61010-1</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Tensión de alimentación de<br>entrada de CA                                          | <ul> <li>110-130 V CA</li> <li>200-240 V CA</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Tensión de alimentación de<br>entrada de CC                                          | <ul> <li>24-30 V CC</li> <li>48-60 V CC</li> <li>100-125 V CC</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Resistencia dieléctrica                                                              | <ul> <li>Entrada/salida:</li> <li>3 kV eficaces durante 1 minuto (modelo de 110-130 V CA y de 200-240 V CA)</li> <li>3 kV eficaces durante 1 minuto (modelo de 110-125 V CC)</li> <li>2 kV eficaces durante 1 minuto (modelo de 24-30 V CC y de 48-60 V CC)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Temperatura                                                                          | 70 °C (158 °F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Corriente de salida                                                                  | 1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Ondulación                                                                           | 200 mV pico-pico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Configuración de la tensión de<br>salida para compensación de<br>pérdida en la línea | De 22,8 a 25,2 V CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

#### Batería de reserva de 24 V CC

Si se interrumpe la alimentación de la fuente de 24 V CC, se puede utilizar una batería de reserva de 24 V CC para mantener en funcionamiento la unidad de control MicroLogic. Esta se instala en conexión serie entre la unidad de control MicroLogic y el módulo de alimentación de 24 V CC.

La batería de reserva de 24 V CC debe contar con las siguientes características (compatibles con la unidad de control MicroLogic):

•

- Tensión de salida de 17 a 28,8 V CC
  - Tensión de corte: 17 V CC (la batería de reserva de 24 V CC debe tener una tensión de salida de parada en caso de nivel de tensión bajo).
  - Histéresis > 3 V CC (para evitar el encendido antes de que la tensión alcance los 21 V CC).
  - La batería de reserva de 24 V CC debe poder alimentar una corriente de irrupción de 10 A.

#### **Batería interna**

Cuando no hay otra fuente de alimentación que alimente la unidad de control MicroLogic, la batería interna alimenta los indicadores LED de causa de disparo.

#### Consumo de los módulos ULP

Se puede utilizar una misma fuente de alimentación para alimentar los módulos ULP de varias unidades funcionales inteligentes (IMU).

En la siguiente tabla se muestra el consumo de los módulos ULP:

| Módulo                                                                                                                             | Consumo típico:<br>(24 V CC a<br>20 °C/68 °F) | Consumo máximo:<br>(19,2 V CC a<br>60 °C/140 °F) |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| Módulo de comunicaciones del interruptor<br>automático BCM ULP para los interruptores<br>automáticos MasterPact NT/NW y ComPacT NS | 40 mA                                         | 300 mA                                           |
| Interfaz IFE Ethernet para un interruptor automático                                                                               | 100 mA                                        | 140 mA                                           |
| Servidor de panel IFE Ethernet                                                                                                     | 100 mA                                        | 140 mA                                           |
| Interfaz IFM Modbus-SL o un interruptor automático                                                                                 | 21 mA                                         | 30 mA                                            |
| Módulo de pantalla frontal FDM121 para un<br>interruptor automático                                                                | 21 mA                                         | 30 mA                                            |

### Memoria térmica

#### Presentación

La memoria térmica es el medio para registrar el aumento de temperatura y la refrigeración provocados por los cambios en el flujo de corriente de los conductores.

Estos cambios pueden deberse a los siguientes factores:

- · Un arranque repetitivo del motor
- Fluctuación de cargas cerca de los ajustes de las protecciones de largo retardo
- · Cierre repetido del interruptor automático en caso de defecto

Las unidades de control sin memoria térmica (a diferencia de la protección térmica de la tira bimetálica) no reaccionan a los tipos de sobrecarga anteriores porque no duran lo suficiente como para provocar el disparo. Sin embargo, cada sobrecarga genera un aumento de temperatura, por lo que el efecto acumulado puede provocar un sobrecalentamiento peligroso.

Las unidades de control con memoria térmica registran el aumento de temperatura provocado por cada sobrecarga, por muy corta que sea. Esta información almacenada en la memoria térmica reduce el tiempo de disparo.

#### Unidades de control MicroLogic y memoria térmica

Todas las unidades de control MicroLogic vienen equipadas de serie con una memoria térmica.

En todas las funciones de protección, antes del disparo, las constantes de aumento de la temperatura y de tiempo de refrigeración son iguales y dependen de la temporización tr:

- Si la temporización es corta, la constante de tiempo es baja.
- Si la temporización es larga, la constante de tiempo es alta.

En el caso de la protección de largo retardo, tras el disparo, la curva de refrigeración se simula mediante la unidad de control. El cierre del interruptor automático antes del final de la constante de tiempo (aproximadamente 15 minutos) reduce el tiempo de disparo indicado en las curvas de disparo.

#### Protección de corto retardo y defectos intermitentes

En el caso de la función de protección de corto retardo, las corrientes intermitentes que no provocan el disparo se almacenan en la memoria de la unidad MicroLogic.

Esta información equivale a la memoria térmica de largo retardo y reduce la temporización de la protección de corto retardo.

Tras un disparo, la temporización de corto retardo tsd se reduce al valor del ajuste mínimo durante 20 segundos.

#### Protección de defecto a tierra y defectos intermitentes

La protección de defecto a tierra implementa la misma función de defectos intermitentes que la protección de corto retardo.

# Cálculo de valores de media (MicroLogic E)

### Presentación

La unidad de control MicroLogic E calcula y muestra:

- los valores de media de las corrientes de fase y del neutro
- el valor de media de la potencia activa total.

Los valores máximos (pico) de media de corriente y potencia se almacenan en la memoria. Todos los valores de media se actualizan al minuto.

### Definición

El valor de media de una cantidad es su valor promedio durante un período de tiempo determinado. En los sistemas de alimentación eléctrica, se utiliza especialmente para la corriente y la potencia. El valor de media no debe confundirse con el valor instantáneo o el valor promedio (o mediana), que a menudo se refiere al promedio (o mediana) de los valores instantáneos de las 3 fases.

#### Intervalo de cálculo

El intervalo de tiempo sobre el cual se calcula el promedio puede ser de 2 tipos:

#### Intervalo fijo

| Intervalo n | Intervalo n + 1 |
|-------------|-----------------|
| <>          |                 |

Duración del intervalo

Al final de un intervalo de medición fijo:

- Se calcula y actualiza el valor de media del intervalo.
- El nuevo valor de media se inicializa en un intervalo nuevo, a partir del final del último intervalo.
- Intervalo deslizante



Al final de un intervalo deslizante:

- Se calcula y actualiza el valor de media del intervalo.
- El nuevo valor de demanda se inicializa en un intervalo nuevo, a partir de un momento determinado después del inicio del último intervalo (siempre inferior a la duración del intervalo).

La duración del intervalo deslizante puede ajustarse por separado para la corriente y potencia medias de 5 a 60 minutos en incrementos de 1 minuto (consulte Ajustes de medición, página 45). El ajuste predeterminado es de 15 minutos.

El desplazamiento de tiempo entre intervalos es igual a 1 minuto.

#### Método de cálculo

MicroLogicLas unidades de control E utilizan el modelo cuadrático para calcular tanto la corriente media como la potencia media.

El modelo cuadrático de cálculo de la media representa el aumento del calor del conductor (imagen térmica).

El aumento de calor que crea la corriente I(t) durante el intervalo de tiempo T es idéntico al que crea una corriente constante Ith durante el mismo intervalo. Esta corriente Ith representa el efecto térmico de la corriente I(t) durante el intervalo T.

El cálculo del valor de media según el modelo térmico siempre debe realizarse en un intervalo deslizante.

NOTA: El valor de media térmico es similar a un valor rms (eficaz).

#### Valores de media pico

La unidad de control MicroLogic E calcula:

- los valores de media máximos (pico) de las corrientes de fase y del neutro desde el último restablecimiento,
- los valores de media máximos (pico) de potencia activa total desde el último restablecimiento.

Se puede acceder a los valores de media pico o restablecerlos de las siguientes maneras:

- Corriente media pico: a través de la unidad de control MicroLogic (consulte el tema detallado, página 33 correspondiente) o la opción de comunicación, página 72.
- Potencia media pico: a través de la opción de comunicación, página 72.

# Rangos de medición y precisión

La precisión de las mediciones de corriente depende del valor mostrado (o transmitido) y de la capacidad del interruptor automático (In):

- Por debajo de 0,1 x In, las mediciones no son significativas.
- Entre 0,1 x In y 0,2 x In, la precisión cambia linealmente del 4 % al 1,5 %.
- Entre 0,2 x In y 1,2 x In, la precisión es del 1,5 %.

La resolución para la corriente es de un amperio.

La resolución para la tensión es de un voltio.

La resolución para la potencia es de un kW, kVar, kVA.

La resolución para la energía es de un kWh, kVarh, kVAh.

| Medición                                                   |                           | MicroLogic | Precisión a 25 °C | Rango de<br>medición para la<br>precisión<br>especificada |
|------------------------------------------------------------|---------------------------|------------|-------------------|-----------------------------------------------------------|
| Corriente instantánea                                      | 11, 12, 13                | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
|                                                            | IN                        | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
|                                                            | I <del>_</del> tierra     | A, E       | ±10 %             | 0,2 x ln ln                                               |
|                                                            | I⊥_ diferencial           | A, E       | ±1,5 %            | De 0 a 30A                                                |
| Maxímetros de                                              | l1 máx., l2 máx., l3 máx. | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
| corriente                                                  | IN máx.                   | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
| Corriente media                                            | <u>11, 12, 13</u>         | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
|                                                            | ĪN                        | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
| Maxímetros de                                              | 11 máx., 12 máx., 13 máx. | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
| cornente media                                             | IN máx.                   | A, E       | ±1,5 %            | 0,2 x ln 1,2 x ln                                         |
| Tensiones entre fases                                      | V12                       | E          | ±0,5 %            | 100 690 V                                                 |
| (sistemas de 3 y 4<br>cables)                              | V23                       | E          | ±0,5 %            | 100 690 V                                                 |
|                                                            | V31                       | E          | ±0,5 %            | 100 690 V                                                 |
| Tensiones entre fase y<br>neutro (sistemas de 4<br>cables) | V1N                       | E          | ±0,5 %            | 100 690 V                                                 |
|                                                            | V2N                       | E          | ±0,5 %            | 100 690 V                                                 |
|                                                            | V3N                       | E          | ±0,5 %            | 100 690 V                                                 |
| Tensión media                                              | Vavg                      | E          | ±0,5 %            | 0 100 %                                                   |
| Desequilibrio de<br>tensión                                | U unbal                   | E          | ±0,5 %            | 0 100 %                                                   |
| Potencia instantánea                                       | P (por fase)              | E          | ±2 %              | 302000 kW                                                 |
|                                                            | Q (por fase)              | E          | ±2 %              | 302000 kVar                                               |
|                                                            | S (por fase)              | E          | ±2 %              | 302000 kVA                                                |
| Maxímetros de                                              | Pmax (por fase)           | E          | ±2 %              | 302000 kW                                                 |
| potencia                                                   | Qmax (por fase)           | E          | ±2 %              | 302000 kVar                                               |
|                                                            | Smax (por fase)           | E          | ±2 %              | 302000 kVA                                                |
| Potencia media                                             | P (por fase)              | E          | ±2 %              | 302000 kW                                                 |
|                                                            | S (por fase)              | E          | ±2 %              | 302000 kVA                                                |
| Maxímetros de<br>potencia media                            | P max (por fase)          | E          | ±2 %              | 302000 kW                                                 |
| Factor de potencia<br>instantánea                          | PF                        | E          | ±2 %              | 0 +1                                                      |

| Medición      |    | MicroLogic | Precisión a 25 °C | Rango de<br>medición para la<br>precisión<br>especificada |
|---------------|----|------------|-------------------|-----------------------------------------------------------|
| Energía total | Ep | E          | ±2 %              | -1010 GWh<br>+1010 GWh                                    |
|               | Eq | E          | ±2 %              | -1010 GVArh<br>+1010 GVArh                                |
|               | Es | E          | ±2 %              | -1010 GVAh<br>+1010 GVAh                                  |

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison Francia

+ 33 (0) 1 41 29 70 00

www.se.com

Debido a que las normas, especificaciones y diseños cambian periódicamente, solicite la confirmación de la información dada en esta , publicación.

© 2022 Schneider Electric. Reservados todos los derechos.

DOCA0218ES-00