ESS Energy Storage System for UL9540 # Galaxy VX UPS (1500 kW I/O Cabinet) and Galaxy Lithium-ion Battery Cabinets ## Installation NOTE: This is a Solution Manual and replaces individual installation manuals for these products. Latest updates are available on the Schneider Electric website 6/2025 ## **Legal Information** The information provided in this document contains general descriptions, technical characteristics and/or recommendations related to products/solutions. This document is not intended as a substitute for a detailed study or operational and site-specific development or schematic plan. It is not to be used for determining suitability or reliability of the products/solutions for specific user applications. It is the duty of any such user to perform or have any professional expert of its choice (integrator, specifier or the like) perform the appropriate and comprehensive risk analysis, evaluation and testing of the products/solutions with respect to the relevant specific application or use thereof. The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this document are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owner. This document and its content are protected under applicable copyright laws and provided for informative use only. No part of this document may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric. Schneider Electric does not grant any right or license for commercial use of the document or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric reserves the right to make changes or updates with respect to or in the content of this document or the format thereof, at any time without notice. To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this document, as well as any non-intended use or misuse of the content thereof. ## **Access to Your Product Manuals Online** ## Find the ESS Energy Storage System Manuals Here: Scan the QR code to go to the online manual portal: https://www.productinfo.schneider-electric.com/galaxyvx_ul/ Here you can find your ESS Energy Storage System manuals, Galaxy VX UPS manuals, and installation manuals for your auxiliary products and options. This online manual portal is available on all devices and offers digital pages, search functionality across the different documents in the portal, and PDF download for offline use. ## **Learn More About the Galaxy VX Here:** Go to https://www.se.com/ww/en/product-range/63732 to learn more about this product. ## Learn More About the Galaxy Lithium-ion Battery Cabinet Here: Go to https://www.se.com/ww/en/product-range/66102 to learn more about this product. ## **Table of Contents** | Important Safety Instructions — SAVE THESE | | |--|----| | INSTRUCTIONS | 7 | | FCC Statement | 8 | | Electromagnetic Compatibility | 8 | | Safety Precautions | 9 | | Electrical Safety | 11 | | Battery Safety | 12 | | Specifications | 14 | | Specifications for ESS Energy Storage System at 480 V (VAC, 3-phase, | | | 50/60Hz) | 14 | | Specifications for 500-1500 kW UPS System | 20 | | Specifications for Lithium-ion Battery Cabinets | | | Overview of Configurations | 22 | | Overview of UPSs with 1500 kW I/O Cabinet – Single Utility/ | | | Mains | | | Overview of UPSs with 1500 kW I/O Cabinet – Dual Utility/Mains | | | Recommended Upstream Protection and Cable Sizes | | | Recommended Bolt and Lug Sizes | | | Inverter Short–Circuit Capabilities (Bypass not Available) | | | Environment | | | Compliance | | | Guidance for Organizing Battery Cables | | | ESS Energy Storage System Weights and Dimensions | | | Clearance | | | Overview of Supplied Installation Kits | | | Installation Kits Shipped with the I/O Cabinet | | | Installation Kit 0M-821667 | | | Installation Kit 0H-9101 | | | Installation Kit 0H-1102 | 38 | | Installation Kits Shipped with the Power Cabinet | 40 | | Installation Kit 0H-9102 | 40 | | Installation Kits Shipped with the Battery Cabinet | 41 | | Installation Procedure | 43 | | Prepare for Installation | 45 | | Install the Rear Seismic Anchoring for the UPS and the Battery | | | Cabinet(s) | 17 | | Position the Cabinets | | | | | | Position and Interconnect the Battery Cabinets | | | Install the Front Seismic Anchoring | 63 | | Prepare the I/O Cabinet for Power Cables in Top Cable Entry | | | Systems | 64 | | Prepare the I/O Cabinet for Power Cables in Bottom Cable Entry | | | Systems | 65 | | Install the Single Utility/Mains Installation Kit 0H-9161 | 66 | | | | | Connect the Power Cables in a 480 V System | 67 | |--|-----| | Mount the Front Anchoring Brackets | 69 | | Signal Cables | 70 | | Route the Signal Cables between the I/O Cabinet and the Power | | | Cabinets | 70 | | Prepare for External Signal Cables | 75 | | Signal Cable Connections to the Switchgear (Boards 0P6547, | | | 0P6548, 0P6549) | 79 | | Signal Cable Connections to Classic Battery Cabinets (Boards | | | 0P6547, 0P6549, 0P6552) | 80 | | Signal Cable Connections to Battery Breaker Cabinet (Boards | | | 0P6547, 0P6548, 0P6549) | | | Connect the Emergency Power Off (EPO) | | | Connect External Synchronization | 82 | | Voltage Source (Boards 0P6548, 0P6549) | 82 | | Signal Cable Connections for Dual UPS Synchronization with a | 02 | | Floating Synchronization Master (Boards 0P6548, 0P6549) | 83 | | Signal Cable Connections for Fixed Parallel Synchronization Master | 00 | | (Boards 0P6548, 0P6549) | 84 | | Connect Equipment to Input Contacts and Output Relays | | | Overview of Input Contacts and Output Relays | | | External Communication | 87 | | Connect the Modbus Cables | 88 | | Final Mechanical Assembly of the I/O Cabinet | 91 | | Final Mechanical Assembly of the Power Cabinets | 95 | | Install the Battery Modules in the Battery Cabinet | 96 | | Connect the Power Cables | | | Overview of Communication Interface | | | | 101 | | Route the Signal Cables to the Switchgear, Rack BMS, and | | | System BMS Ports | 102 | | Overview of Signal Cables between the Battery Cabinets and the | 400 | | Auxiliary Contacts in the UPS | | | Overview of Signal Cables for Alarms and Battery Breaker Trip | | | Overview of CAN Bus Cables between the Battery Cabinets Overview of EPO Signal Cables | | | - | | | Decommission or Move the UPS to a New Location | 110 | | Decommission or Move the Battery Cabinet to a New | | | Location | 115 | # Important Safety Instructions — SAVE THESE INSTRUCTIONS Read these instructions carefully and look at the equipment to become familiar with it before trying to install, operate, service or maintain it. The following safety messages may appear throughout this manual or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure. The addition of this symbol to a "Danger" or "Warning" safety message indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed. This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages with this symbol to avoid possible injury or death. ### **A** DANGER **DANGER** indicates a hazardous situation which, if not avoided, **will result in** death or serious injury. Failure to follow these instructions will result in death or serious injury. ### **AWARNING** **WARNING** indicates a hazardous situation which, if not avoided, **could result** in death or serious injury. Failure to follow these instructions can result in death, serious injury, or equipment damage. ## **ACAUTION** **CAUTION** indicates a hazardous situation which, if not avoided, **could result in** minor or moderate injury. Failure to follow these instructions can result in injury or equipment damage. ### **NOTICE** **NOTICE** is used to address practices not related to physical injury. The safety alert symbol shall not be used with this type of safety message. Failure to follow these instructions can result in equipment damage. ## **Please Note** Electrical equipment should only be installed, operated, serviced, and maintained by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. A qualified person is one who has skills and knowledge related to the construction, installation, and operation of electrical equipment and has received safety training to recognize and avoid the hazards involved. Per IEC 62040-1: "Uninterruptible power systems (UPS) -- Part 1: Safety Requirements," this equipment, including battery access, must be inspected, installed and maintained by a skilled person. The skilled person is a person with relevant education and experience to enable him or her to perceive risks and to avoid hazards which the equipment can create (reference IEC 62040-1, section 3.102). ### **FCC Statement** **NOTE:** This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the
user will be required to correct the interference at his own expense. Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. ## **Electromagnetic Compatibility** ### NOTICE ### RISK OF ELECTROMAGNETIC DISTURBANCE Galaxy VX UPS is a product Category C3 according to IEC 62040-2. This is a product for commercial and industrial applications in the second environment - installation restrictions or additional measures may be needed to prevent disturbances. The second environment includes all commercial, light industry, and industrial locations other than residential, commercial, and light industrial premises directly connected without intermediate transformer to a public low-voltage mains supply. The installation and cabling must follow the electromagnetic compatibility rules, e.g.: - the segregation of cables, - the use of shielded or special cables when relevant, - the use of grounded metallic cable tray and supports. Failure to follow these instructions can result in equipment damage. ## **NOTICE** #### **RISK OF ELECTROMAGNETIC DISTURBANCE** Galaxy Lithium-ion Battery Cabinet is a product category C2 UPS product. In a residential environment, this product may cause radio inference, in which case the user may be required to take additional measures. Failure to follow these instructions can result in equipment damage. ## **Safety Precautions** ### ▲ DANGER #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH All safety instructions in this document must be read, understood and followed. Failure to follow these instructions will result in death or serious injury. ### **▲** DANGER ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Read all instructions in the Installation Manual before installing or working on this UPS system. Failure to follow these instructions will result in death or serious injury. ### **▲** DANGER #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not install the UPS system until all construction work has been completed and the installation room has been cleaned. Failure to follow these instructions will result in death or serious injury. ### **▲** DANGER #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH - The product must be installed according to the specifications and requirements as defined by Schneider Electric. It concerns in particular the external and internal protections (upstream disconnect devices, battery disconnect devices, cabling, etc.) and environmental requirements. No responsibility is assumed by Schneider Electric if these requirements are not respected. - After the UPS system has been electrically wired, do not start up the system. Start-up must only be performed by Schneider Electric. Failure to follow these instructions will result in death or serious injury. ## **ADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH The UPS system must be installed according to local and national regulations. Install the UPS according to: - NEC NFPA 70, or - Canadian Electrical Code (C22.1, Part 1) depending on which one of the standards apply in your local area. Failure to follow these instructions will result in death or serious injury. ## **ADANGER** ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH - Install the UPS system in a temperature controlled indoor environment free of conductive contaminants and humidity. - Install the UPS system on a non-flammable, level and solid surface (e.g. concrete) that can support the weight of the system. Failure to follow these instructions will result in death or serious injury. 990-914302A-001 ## **ADANGER** ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH The UPS is not designed for and must therefore not be installed in the following unusual operating environments: - Damaging fumes - Explosive mixtures of dust or gases, corrosive gases, or conductive or radiant heat from other sources - Moisture, abrasive dust, steam or in an excessively damp environment - Fungus, insects, vermin - Salt-laden air or contaminated cooling refrigerant - Pollution degree higher than 2 according to IEC 60664-1 - Exposure to abnormal vibrations, shocks, and tilting - Exposure to direct sunlight, heat sources, or strong electromagnetic fields Failure to follow these instructions will result in death or serious injury. ## **ADANGER** ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not drill or cut holes for cables or conduits with the gland plates installed and do not drill or cut holes in close proximity to the UPS. Failure to follow these instructions will result in death or serious injury. ## **ADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not make mechanical changes to the product (including removal of cabinet parts or drilling/cutting of holes) that are not described in the Installation Manual. Failure to follow these instructions will result in death or serious injury. ## **AWARNING** #### CHEMICAL HAZARD This product can expose you to chemicals including Tetrabromobisphenol A, which is known to the State of California to cause cancer. For more information, go to www.P65Warnings.ca.gov Failure to follow these instructions can result in death, serious injury, or equipment damage. ## **NOTICE** #### **RISK OF OVERHEATING** Respect the space requirements around the UPS system and do not cover the product's ventilation openings when the UPS system is in operation. Failure to follow these instructions can result in equipment damage. ## **NOTICE** #### **RISK OF EQUIPMENT DAMAGE** Do not connect the UPS output to regenerative load systems including photovoltaic systems and speed drives. Failure to follow these instructions can result in equipment damage. ### **Electrical Safety** This manual contains important safety instructions that should be followed during the installation and maintenance of the UPS system. ### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH - Electrical equipment must be installed, operated, serviced, and maintained only by qualified personnel. - Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices. - Disconnection devices for AC and DC must be provided by others, be readily accessible, and the function of the disconnect device marked for its function. - Turn off all power supplying the UPS system before working on or inside the equipment. - Before working on the UPS system, check for hazardous voltage between all terminals including the protective earth. - The UPS contains an internal energy source. Hazardous voltage can be present even when disconnected from the mains supply. Before installing or servicing the UPS system, ensure that the units are OFF and that mains and batteries are disconnected. Wait five minutes before opening the UPS to allow the capacitors to discharge. - The UPS must be properly earthed/grounded and due to a high touch current/leakage current, the earthing/grounding conductor must be connected first. - A disconnection device (e.g. disconnection circuit breaker or switch) must be installed to enable isolation of the system from upstream power sources in accordance with local regulations. This disconnection device must be easily accessible and visible. Failure to follow these instructions will result in death or serious injury. The label below must be added if: - The UPS input is connected through external isolators that, when opened, isolate the neutral, OR - 2. The UPS input is connected via an IT power system. The label must be placed adjacent to all upstream power disconnection devices that isolate the neutral. The label below must be also added if backfeed protection is provided external to the equipment. See for more details. The label must be placed adjacent to all upstream power disconnection devices. ### **AA** DANGER ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Risk of voltage backfeed. Before working on this circuit: Isolate the UPS and check for hazardous voltage between all terminals including the protective earth. Failure to follow these instructions will result in death or serious injury. 990-914302A-001 ## **ADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH - Always perform correct Lockout/Tagout before working on the UPS. - A UPS with autostart enabled will automatically restart when the mains supply returns. - If autostart is enabled on the UPS, a label must be added on the UPS to warn about this functionality. Failure to follow these instructions will result in death or serious injury. Add the label below on the UPS if autostart has been enabled: ### **ADANGER** ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Autostart is enabled. The UPS will automatically restart when the mains supply returns. Failure to follow these instructions will result in death or serious injury. ## **NOTICE** #### **RISK OF UNINTENTIONAL DEVICE OPERATION** If a residual current-operated protective device (RCD-B) is used upstream as ground fault protection, then the RCD-B shall be sized to not trip on the leakage current of this product. The start-up leakage current can be up to 3 A. The continuous maximum leakage current is 350 mA. Failure to follow these instructions can result in equipment damage. ## **Battery Safety** ### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH - Battery circuit breakers must be installed according to the specifications and requirements as defined by Schneider Electric. - Servicing of batteries must only be performed or supervised by qualified personnel knowledgeable of batteries and the required precautions. Keep unqualified personnel away from batteries. - Disconnect charging source prior to connecting or disconnecting battery terminals. - Do not dispose of batteries in a fire as they can explode. - Do not open, alter, or mutilate batteries. Failure to follow these instructions will result in death or serious injury. ##
AADANGER ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Batteries can present a risk of electric shock and high short-circuit current. The following precautions must be observed when working on batteries - Remove watches, rings, or other metal objects. - · Use tools with insulated handles. - · Wear protective glasses, gloves and boots. - Do not lay tools or metal parts on top of batteries. - Disconnect the charging source prior to connecting or disconnecting battery terminals. - Determine if the battery is inadvertently grounded. If inadvertently grounded, remove source from ground. Contact with any part of a grounded battery can result in electric shock. The likelihood of such shock can be reduced if such grounds are removed during installation and maintenance (applicable to equipment and remote battery supplies not having a grounded supply circuit). Failure to follow these instructions will result in death or serious injury. ### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH When replacing batteries, always replace with the same battery module type. Failure to follow these instructions will result in death or serious injury. ### NOTICE #### **RISK OF EQUIPMENT DAMAGE** - Lithium-ion batteries should not be stored beyond 15 months from the date of production. If they are stored for longer the calendar degradation will cause the batteries to be irreversible degraded beyond what is expected a reduced runtime will be the consequence. Performance guarantee will be measured from the time of deployment or from production date +15 months, whichever comes first. For storage beyond 15 months, contact Schneider Flectric - If the UPS system remains de-energized for a long period, Schneider Electric recommends to shut down the battery cabinet completely. Failure to follow these instructions can result in equipment damage. ### **A**CAUTION #### **RISK OF PERSONAL INJURY** This product contains electrolyte and other chemicals. If the product is received with external damage that causes a person to come into contact with the electrolyte, please proceed as follows: - EYE AND SKIN CONTACT: Immediately flush with plenty of water and seek medical assistance. - RESPIRATORY INHALATION: Immediately move away from vaporized gas, get fresh air and rest, and seek medical assistance if necessary. Failure to follow these instructions can result in injury or equipment damage. 990-914302A-001 ## **Specifications** # Specifications for ESS Energy Storage System at 480 V (VAC, 3-phase, 50/60Hz) Arc flash related calculation of the battery system is estimated with the Direct-Current Incident Energy Calculations referenced in Informative Annex D of NFPA 70E Standard for Electrical Safety in the Workplace. The ESS system is assumed to estimate the worst-case scenario of 17 LIBSESMG17UL battery cabinets in parallel. Estimated arc flash: < 0.97 cal/cm². | ESS Model | Max. input
current (A) | Max. output
current (A) | Max. energy
output (kWh) | Max. power input (kVA) | Max.
power
output
(kVA) | Ambient
tempera-
ture
range (° | Max.
short-
circuit
current
(kA) | |-------------------------------------|---------------------------|----------------------------|-----------------------------|------------------------|----------------------------------|---|--| | GVX500K1500GS-
3LIBSESMG17UL | 757 | 601 | 103.8 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
4LIBSESMG17UL | 757 | 601 | 138.4 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
5LIBSESMG17UL | 757 | 601 | 173 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
6LIBSESMG17UL | 757 | 601 | 207.6 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
7LIBSESMG17UL | 757 | 601 | 242.2 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
8LIBSESMG17UL | 757 | 601 | 276.8 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
9LIBSESMG17UL | 757 | 601 | 311.4 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
10LIBSESMG17UL | 757 | 601 | 346 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
11LIBSESMG17UL | 757 | 601 | 380.6 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
12LIBSESMG17UL | 757 | 601 | 415.2 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
13LIBSESMG17UL | 757 | 601 | 449.8 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
14LIBSESMG17UL | 757 | 601 | 484.4 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
15LIBSESMG17UL | 757 | 601 | 519 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
16LIBSESMG17UL | 757 | 601 | 553.6 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-
17LIBSESMG17UL | 757 | 601 | 588.2 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
3LIBSESMG17UL | 757 | 601 | 103.8 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
4LIBSESMG17UL | 757 | 601 | 138.4 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
5LIBSESMG17UL | 757 | 601 | 173 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
6LIBSESMG17UL | 757 | 601 | 207.6 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
7LIBSESMG17UL | 757 | 601 | 242.2 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
8LIBSESMG17UL | 757 | 601 | 276.8 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
9LIBSESMG17UL | 757 | 601 | 311.4 | 755 | 500 | 23±5 | 100 | | ESS Model | Max. input
current (A) | Max. output
current (A) | Max. energy
output (kWh) | Max. power input (kVA) | Max.
power
output
(kVA) | Ambient
tempera-
ture
range (°
C) | Max.
short-
circuit
current
(kA) | |--------------------------------------|---------------------------|----------------------------|-----------------------------|------------------------|----------------------------------|---|--| | GVX500K1500GS-JC4-
10LIBSESMG17UL | 757 | 601 | 346 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
11LIBSESMG17UL | 757 | 601 | 380.6 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
12LIBSESMG17UL | 757 | 601 | 415.2 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
13LIBSESMG17UL | 757 | 601 | 449.8 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
14LIBSESMG17UL | 757 | 601 | 484.4 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
15LIBSESMG17UL | 757 | 601 | 519 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
16LIBSESMG17UL | 757 | 601 | 553.6 | 755 | 500 | 23±5 | 100 | | GVX500K1500GS-JC4-
17LIBSESMG17UL | 757 | 601 | 588.2 | 755 | 500 | 23±5 | 100 | | GVX750K1500GS-
4LIBSESMG17UL | 1136 | 902 | 138.4 | 1133 | 736 | 23±5 | 100 | | GVX750K1500GS-
5LIBSESMG17UL | 1136 | 902 | 173 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
6LIBSESMG17UL | 1136 | 902 | 207.6 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
7LIBSESMG17UL | 1136 | 902 | 242.2 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
8LIBSESMG17UL | 1136 | 902 | 276.8 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
9LIBSESMG17UL | 1136 | 902 | 311.4 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
10LIBSESMG17UL | 1136 | 902 | 346 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
11LIBSESMG17UL | 1136 | 902 | 380.6 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
12LIBSESMG17UL | 1136 | 902 | 415.2 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
13LIBSESMG17UL | 1136 | 902 | 449.8 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
14LIBSESMG17UL | 1136 | 902 | 484.4 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
15LIBSESMG17UL | 1136 | 902 | 519 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
16LIBSESMG17UL | 1136 | 902 | 553.6 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-
17LIBSESMG17UL | 1136 | 902 | 588.2 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
4LIBSESMG17UL | 1136 | 902 | 138.4 | 1133 | 736 | 23±5 | 100 | | GVX750K1500GS-JC4-
5LIBSESMG17UL | 1136 | 902 | 173 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
6LIBSESMG17UL | 1136 | 902 | 207.6 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
7LIBSESMG17UL | 1136 | 902 | 242.2 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
8LIBSESMG17UL | 1136 | 902 | 276.8 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
9LIBSESMG17UL | 1136 | 902 | 311.4 | 1133 | 750 | 23±5 | 100 | | ESS Model | Max. input
current (A) | Max. output
current (A) | Max. energy
output (kWh) | Max. power input (kVA) | Max.
power
output
(kVA) | Ambient
tempera-
ture
range (°
C) | Max.
short-
circuit
current
(kA) | |---------------------------------------|---------------------------|----------------------------|-----------------------------|------------------------|----------------------------------|---|--| | GVX750K1500GS-JC4-
10LIBSESMG17UL | 1136 | 902 | 346 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
11LIBSESMG17UL | 1136 | 902 | 380.6 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
12LIBSESMG17UL | 1136 | 902 | 415.2 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
13LIBSESMG17UL | 1136 | 902 | 449.8 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
14LIBSESMG17UL | 1136 | 902 | 484.4 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
15LIBSESMG17UL | 1136 | 902 | 519 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
16LIBSESMG17UL | 1136 | 902 | 553.6 | 1133 | 750 | 23±5 | 100 | | GVX750K1500GS-JC4-
17LIBSESMG17UL | 1136 | 902 | 588.2 | 1133 | 750 | 23±5 | 100 | | GVX1000K1500GS-
5LIBSESMG17UL | 1514 | 1203 | 173 | 1510 | 920 | 23±5 | 100 | | GVX1000K1500GS-
6LIBSESMG17UL | 1514 | 1203 | 207.6 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
7LIBSESMG17UL | 1514 | 1203 | 242.2 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
8LIBSESMG17UL | 1514 | 1203 | 276.8 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
9LIBSESMG17UL | 1514 | 1203 | 311.4 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
10LIBSESMG17UL | 1514 | 1203 | 346 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
11LIBSESMG17UL | 1514 | 1203 | 380.6 | 1510 | 1000 | 23±5 | 100 | |
GVX1000K1500GS-
12LIBSESMG17UL | 1514 | 1203 | 415.2 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
13LIBSESMG17UL | 1514 | 1203 | 449.8 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
14LIBSESMG17UL | 1514 | 1203 | 484.4 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
15LIBSESMG17UL | 1514 | 1203 | 519 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
16LIBSESMG17UL | 1514 | 1203 | 553.6 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-
17LIBSESMG17UL | 1514 | 1203 | 588.2 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
5LIBSESMG17UL | 1514 | 1203 | 173 | 1510 | 920 | 23±5 | 100 | | GVX1000K1500GS-JC4-
6LIBSESMG17UL | 1514 | 1203 | 207.6 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
7LIBSESMG17UL | 1514 | 1203 | 242.2 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
8LIBSESMG17UL | 1514 | 1203 | 276.8 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
9LIBSESMG17UL | 1514 | 1203 | 311.4 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
10LIBSESMG17UL | 1514 | 1203 | 346 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
11LIBSESMG17UL | 1514 | 1203 | 380.6 | 1510 | 1000 | 23±5 | 100 | | ESS Model | Max. input
current (A) | Max. output
current (A) | Max. energy
output (kWh) | Max. power input (kVA) | Max.
power
output
(kVA) | Ambient
tempera-
ture
range (°
C) | Max.
short-
circuit
current
(kA) | |---------------------------------------|---------------------------|----------------------------|-----------------------------|------------------------|----------------------------------|---|--| | GVX1000K1500GS-JC4-
12LIBSESMG17UL | 1514 | 1203 | 415.2 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
13LIBSESMG17UL | 1514 | 1203 | 449.8 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
14LIBSESMG17UL | 1514 | 1203 | 484.4 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
15LIBSESMG17UL | 1514 | 1203 | 519 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
16LIBSESMG17UL | 1514 | 1203 | 553.6 | 1510 | 1000 | 23±5 | 100 | | GVX1000K1500GS-JC4-
17LIBSESMG17UL | 1514 | 1203 | 588.2 | 1510 | 1000 | 23±5 | 100 | | GVX1250K1500GS-
6LIBSESMG17UL | 1893 | 1504 | 207.6 | 1888 | 1104 | 23±5 | 100 | | GVX1250K1500GS-
7LIBSESMG17UL | 1893 | 1504 | 242.2 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
8LIBSESMG17UL | 1893 | 1504 | 276.8 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
9LIBSESMG17UL | 1893 | 1504 | 311.4 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
10LIBSESMG17UL | 1893 | 1504 | 346 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
11LIBSESMG17UL | 1893 | 1504 | 380.6 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
12LIBSESMG17UL | 1893 | 1504 | 415.2 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
13LIBSESMG17UL | 1893 | 1504 | 449.8 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
14LIBSESMG17UL | 1893 | 1504 | 484.4 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
15LIBSESMG17UL | 1893 | 1504 | 519 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
16LIBSESMG17UL | 1893 | 1504 | 553.6 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-
17LIBSESMG17UL | 1893 | 1504 | 588.2 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
6LIBSESMG17UL | 1893 | 1504 | 207.6 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
7LIBSESMG17UL | 1893 | 1504 | 242.2 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
8LIBSESMG17UL | 1893 | 1504 | 276.8 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
9LIBSESMG17UL | 1893 | 1504 | 311.4 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
10LIBSESMG17UL | 1893 | 1504 | 346 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
11LIBSESMG17UL | 1893 | 1504 | 380.6 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
12LIBSESMG17UL | 1893 | 1504 | 415.2 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
13LIBSESMG17UL | 1893 | 1504 | 449.8 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
14LIBSESMG17UL | 1893 | 1504 | 484.4 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
15LIBSESMG17UL | 1893 | 1504 | 519 | 1888 | 1250 | 23±5 | 100 | | ESS Model | Max. input
current (A) | Max. output
current (A) | Max. energy
output (kWh) | Max. power input (kVA) | Max.
power
output
(kVA) | Ambient
tempera-
ture
range (° | Max.
short-
circuit
current
(kA) | |---------------------------------------|---------------------------|----------------------------|-----------------------------|------------------------|----------------------------------|---|--| | GVX1250K1500GS-JC4-
16LIBSESMG17UL | 1893 | 1504 | 553.6 | 1888 | 1250 | 23±5 | 100 | | GVX1250K1500GS-JC4-
17LIBSESMG17UL | 1893 | 1504 | 588.2 | 1888 | 1250 | 23±5 | 100 | | GVX1500K1500GS-
8LIBSESMG17UL | 2271 | 1804 | 276.8 | 2265 | 1472 | 23±5 | 100 | | GVX1500K1500GS-
9LIBSESMG17UL | 2271 | 1804 | 311.4 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
10LIBSESMG17UL | 2271 | 1804 | 346 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
11LIBSESMG17UL | 2271 | 1804 | 380.6 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
12LIBSESMG17UL | 2271 | 1804 | 415.2 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
13LIBSESMG17UL | 2271 | 1804 | 449.8 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
14LIBSESMG17UL | 2271 | 1804 | 484.4 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
15LIBSESMG17UL | 2271 | 1804 | 519 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
16LIBSESMG17UL | 2271 | 1804 | 553.6 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-
17LIBSESMG17UL | 2271 | 1804 | 588.2 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
8LIBSESMG17UL | 2271 | 1804 | 276.8 | 2265 | 1472 | 23±5 | 100 | | GVX1500K1500GS-JC4-
9LIBSESMG17UL | 2271 | 1804 | 311.4 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
10LIBSESMG17UL | 2271 | 1804 | 346 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
11LIBSESMG17UL | 2271 | 1804 | 380.6 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
12LIBSESMG17UL | 2271 | 1804 | 415.2 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
13LIBSESMG17UL | 2271 | 1804 | 449.8 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
14LIBSESMG17UL | 2271 | 1804 | 484.4 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
15LIBSESMG17UL | 2271 | 1804 | 519 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
16LIBSESMG17UL | 2271 | 1804 | 553.6 | 2265 | 1500 | 23±5 | 100 | | GVX1500K1500GS-JC4-
17LIBSESMG17UL | 2271 | 1804 | 588.2 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
8LIBSESMG17UL | 2271 | 1804 | 276.8 | 2265 | 1472 | 23±5 | 100 | | GVX1750K1500GS-
9LIBSESMG17UL | 2271 | 1804 | 311.4 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
10LIBSESMG17UL | 2271 | 1804 | 346 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
11LIBSESMG17UL | 2271 | 1804 | 380.6 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
12LIBSESMG17UL | 2271 | 1804 | 415.2 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
13LIBSESMG17UL | 2271 | 1804 | 449.8 | 2265 | 1500 | 23±5 | 100 | | ESS Model | Max. input
current (A) | Max. output
current (A) | Max. energy
output (kWh) | Max. power input (kVA) | Max.
power
output
(kVA) | Ambient
tempera-
ture
range (° | Max.
short-
circuit
current
(kA) | |---------------------------------------|---------------------------|----------------------------|-----------------------------|------------------------|----------------------------------|---|--| | GVX1750K1500GS-
14LIBSESMG17UL | 2271 | 1804 | 484.4 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
15LIBSESMG17UL | 2271 | 1804 | 519 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
16LIBSESMG17UL | 2271 | 1804 | 553.6 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-
17LIBSESMG17UL | 2271 | 1804 | 588.2 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
8LIBSESMG17UL | 2271 | 1804 | 276.8 | 2265 | 1472 | 23±5 | 100 | | GVX1750K1500GS-JC4-
9LIBSESMG17UL | 2271 | 1804 | 311.4 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
10LIBSESMG17UL | 2271 | 1804 | 346 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
11LIBSESMG17UL | 2271 | 1804 | 380.6 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
12LIBSESMG17UL | 2271 | 1804 | 415.2 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
13LIBSESMG17UL | 2271 | 1804 | 449.8 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
14LIBSESMG17UL | 2271 | 1804 | 484.4 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
15LIBSESMG17UL | 2271 | 1804 | 519 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
16LIBSESMG17UL | 2271 | 1804 | 553.6 | 2265 | 1500 | 23±5 | 100 | | GVX1750K1500GS-JC4-
17LIBSESMG17UL | 2271 | 1804 | 588.2 | 2265 | 1500 | 23±5 | 100 | ## Specifications for 500-1500 kW UPS System | | UPS rating | 500 kW | 750 kW | 1000 kW | 1250 kW | 1500 kW | | | | | | |--------|--|--|---|---|---|------------------------|--|--|--|--|--| | | Connections | L1, L2, L3 + G | 1 | | | | | | | | | | | Input voltage range (V) ² | 408-576 | 408-576 | | | | | | | | | | | Frequency (Hz) | 40-70 | 40-70 | | | | | | | | | | | Nominal input current (A) | 646 | 969 | 1291 | 1615 | 1937 | | | | | | | | Maximum input current (A) ³ | 757 | 1136 | 1514 | 1893 | 2271 | | | | | | | Input | Input current limitation (A) | 760 | 1140 | 1520 | 1900 |
2280 | | | | | | | _ | Maximum short circuit rating | 100 kA RMS | - | | | - | | | | | | | | Total harmonic distortion (THDI) | <3% at 100% I | oad, <4% at 50% | load, <9% at 25% | % load | | | | | | | | | Input power factor | 0.99 at >40% l | 0.99 at >40% load, 0.98 at >20% load, 0.97 at >10% load | | | | | | | | | | | Protection | Contactors | Contactors | | | | | | | | | | | Ramp-in | Adaptive 1-300 | Adaptive 1-300 seconds | | | | | | | | | | | Connections | 1250 kW I/O: L
1500 kW I/O ⁴ : | 1250 kW I/O: L1, L2, L3, G or L1, L2, L3, N, G
1500 kW I/O ⁴ : L1, L2, L3, G | | | | | | | | | | | Bypass voltage range (V) | 432-528 | 432-528 | | | | | | | | | | | Frequency (Hz) | 50 or 60 | 50 or 60 | | | | | | | | | | | Frequency range (Hz) | Programmable | Programmable: ±0.1, ±3, ±10. Default is ±3 | | | | | | | | | | | Nominal bypass current (A) | 642 | 964 | 1284 | 1605 | 1926 | | | | | | | Bypass | Maximum short circuit rating | 1500 kW I/O: 1 | 1250 kW I/O: 100 kA Icw
1500 kW I/O: 100 kA RMS (conditioned by an internal molded switch with 90 kA
peak magnetic trip) | | | | | | | | | | Byp | Thyristor I²t (kA*s²) | 1250 kW I/O:
9165
1500 kW I/O:
16245 | 16245 (1500
kW I/O) | | | | | | | | BF2 magnetic trip | | 1250 kW I/O: 39 kA
1500 kW I/O: 39 kA | | | | | | | | | | | Protection | backfeed prote
1250 kW I/O w
protection
1500 kW I/O w | 1250 kW I/O with preinstalled backfeed breaker BF2: Molded switch with trip for backfeed protection 1250 kW I/O with GVXOPT001 installed: Molded switch with trip for backfeed protection 1500 kW I/O with preinstalled backfeed breaker BF2: Molded switch with trip for backfeed protection | | | | | | | | | 20 990-914302A-001 WYE source – solid grounded and high resistance grounded sources are supported. Corner (line) grounding is not permitted. The system can operate at 600 V for 1 minute. At nominal input voltage and full charge. ⁴⁻wire connection with neutral is not compliant per FCC regulations for the 1500 kW I/O cabinet. | | UPS rating | 500 kW | 750 kW | 1000 kW | 1250 kW | 1500 kW | | | | | |---|--|---|---|------------------|----------------|---------|--|--|--|--| | | Connections | 1250 kw I/O: L ²
1500 kW I/O ⁶ : | 1250 kw I/O: L1, L2, L3, G, GEC ⁵ or L1, L2, L3, N, G
1500 kW I/O ⁶ : L1, L2, L3, G, GEC ⁵ | | | | | | | | | | Overload capacity | Battery operation Bypass operation | Normal operation: 150% for 1 minute, 125% for 10 minutes Battery operation: 128% for 10 seconds, 115% for 1 minute Bypass operation: 110% continuous, 1000% for 60 milliseconds for systems with 1250 kW I/O cabinet, and 1000% for 100 milliseconds for systems with 1500 kW I/O cabinet | | | | | | | | | | Output voltage tolerance | Balanced load: | ±1%, Unbalance | ed load: ±3% | | | | | | | | | Dynamic load response | ±5% after 2 ms | ±5% after 2 ms, ±1% after 50 ms | | | | | | | | | . | Output power factor | 1 | | | | | | | | | | Output | Nominal output current (A) | 601 | 902 | 1203 | 1504 | 1804 | | | | | | 0 | Maximum short circuit rating ⁸ | 100 kA RMS | | | | | | | | | | | Inverter output short circuit capabilities | | Varies with time. See graph and table values in Inverter Short–Circuit Capabilities (Bypass not Available), page 27. | | | | | | | | | | Total harmonic distortion (THDU) | <2% at 100% li | near load, <3% a | t 100% non-linea | r load | | | | | | | | Output frequency (Hz) | 50/60 (synchro | nized to bypass), | 50/60 Hz ±0.1% | (free-running) | | | | | | | | Slew rate (Hz/sec) | Programmable: 0.25, 0.5, 1, 2, 4, 6 | | | | | | | | | | | Load crest factor | Up to 3 (THDU < 5%) | | | | | | | | | | Load power factor 0.7 leading to 0.5 lagging without derating | | | | | | | | | | | 990-914302A-001 21 Per NEC 250.30. ^{5.} 6. 7. 8. 4-wire connection with neutral is not compliant per FCC regulations for the 1500 kW I/O cabinet. 125% for 480 V. Maximum short circuit rating for output takes backfeeding energy through the bypass of parallel UPSs into consideration. ## **Specifications for Lithium-ion Battery Cabinets** | Charging power in % of output power | 40% at ≤ 80% load, 15% at 100% load | |---|-------------------------------------| | Nominal battery voltage (VDC) at 3.8 V per cell | 517 | | Peak current at voltage (A) | 450 | | Charge current default rate (CA rate) | 0.7 | | Maximum continuous charge current rate (CA rate) | 1.0 | | Float charge voltage (VDC) at 4.2 V per cell | 571 | | End of discharge voltage (VDC) at 3.0 V per cell | 408 | | Nominal float voltage (VDC) | 571 | | Maximum continuous 100% depth of discharge power (kW) | 184 | | Maximum partial depth of discharge power (kW) | 231 | | Short circuit rating value (kA) - Isc, RMS (Isc, MAX) | 2.9 (9.0) | **NOTE:** If the battery temperature is higher than the threshold after a full discharge at maximum continuous discharge power, the UPS may have to reduce the charge current to zero to protect the battery. **NOTE:** The battery temperature must return to room temperature ±3 °C (5 °F) before a new discharge at maximum continuous discharge power. If not, the battery breaker may be tripped due to overtemperature protection. **NOTE:** The working temperature for the busbars should be no more than 100 °C (212 °F). ## **Overview of Configurations** ## **Breakers in the System** | UIB | Unit input breaker | |------|-----------------------------| | SSIB | Static switch input breaker | | ВВ | Battery breaker | | МВВ | Maintenance bypass breaker | | UOB | Unit output breaker | | BF2 | Backfeed protection switch | ## Overview of UPSs with 1500 kW I/O Cabinet - Single Utility/Mains The illustration shows a 1500 kW UPS. The principle is the same for the other UPSs with the 1500 kW I/O cabinet. ### Galaxy VX 1500 kW UPS ## Overview of UPSs with 1500 kW I/O Cabinet - Dual Utility/Mains The illustration shows a 1500 kW UPS. The principle is the same for the other UPSs with the 1500 kW I/O cabinet. ### Galaxy VX 1500 kW UPS ## **Recommended Upstream Protection and Cable Sizes** ### **ACAUTION** #### HAZARD OF FIRE - · Connect only to a circuit with the below specifications. - Connect only to a circuit provided with a maximum branch circuit overcurrent protection, as specified in the UPS rating tables below, in accordance with the National Electrical Code, ANSI/NFPA70, and the Canadian Electrical Code, Part I, C22.1. Failure to follow these instructions can result in injury or equipment damage. **NOTE:** Overcurrent protection is to be provided by others. **NOTE:** All wiring must comply with all applicable national and/or electrical code (National Electrical Code, ANSI/NFPA 70). Cable sizes in this manual are based on Table 310.15 of the National Electrical Code 2014 (NEC) with the following assertions: - 90 °C (194 °F) conductors (THHN) for 75 °C (167 °F) termination - Not more than 3 current carrying conductors in each conduit - An ambient temperature of max. 30 °C (86 °F) - Use of copper or aluminum conductors for the UPS. - Use of copper conductors for the Lithium-ion cabinet. - 100% rated breakers - Nominal operating conditions If the ambient room temperature is greater than 30 °C (86 °F), use larger or additional parallel conductors in accordance with the correction factors of the NEC. The maximum allowable conductor size is 600 kcmil. Equipment Grounding Conductors (EGC) are sized in accordance with NEC Article 250.122 and Table 250.122 Minimum size equipment conductor for grounding equipment. **NOTE:** Always consider the EGC size according to the complete electrical installation. ### NOTICE #### RISK OF EQUIPMENT DAMAGE To ensure correct load sharing in bypass operation in a parallel system, the following recommendations apply: - · The bypass cables must be of the same length for all UPSs. - The output cables must be of the same length for all UPSs. - The input cables must be of the same length for all UPSs in a single mains system. - · Cable formation recommendations must be followed. - The reactance of busbar layout in the bypass/input and output switchgear must be the same for all UPSs. If the above recommendations are not followed the result can be uneven load sharing in bypass and overload of individual UPSs. Failure to follow these instructions can result in equipment damage. # Recommended Upstream Protection and Cable Sizes for 500 kW UPS | | Maximum OCPD (A) | Cable size per phase (AWG/kcmil)
Copper / Aluminum | EGC cable size (AWG/kcmil) ⁹
Copper / Aluminum | |--------|----------------------------|---|--| | Input | 800 (I _r = 1.0) | 2x500 / 3x400 | 1x1/0 / 1x3/0 | | Bypass | 700 (I _r = 1.0) | 2x350 / 2x500 | 1x1/0 / 1x3/0 | | Output | 700 (I _r = 1.0) | 2x350 / 2x500 | 1x1/0 / 1x3/0 | # Recommended Upstream Protection and Cable Sizes for 750 kW UPS | | Maximum OCPD (A) | Cable size per phase (AWG/kcmil)
Copper / Aluminum | EGC cable size (AWG/kcmil) ⁹
Copper / Aluminum | |--------|-----------------------------|---|--| | Input | 1200 (I _r = 1.0) | 3x600 / 4x500 | 1x3/0 / 1x250 | | Bypass | 1000 (I _r = 1.0) | 3x400 / 3x600 | 1x2/0 / 1x4/0 | | Output | 1000 (I _r = 1.0) | 3x400 / 3x600 | 1x2/0 / 1x4/0 | # Recommended Upstream Protection and Cable Sizes for 1000 kW UPS | | Maximum OCPD (A) | Cable size per phase (AWG/kcmil)
Copper / Aluminum | EGC
cable size (AWG/kcmil) ⁹
Copper / Aluminum | |--------|-----------------------------|---|--| | Input | 1600 (I _r = 1.0) | 4x600 / 5x600 | 1x4/0 / 1x350 | | Bypass | 1600 (I _r = 0.8) | 4x400 / 4x600 | 1x4/0 / 1x350 | | Output | 1600 (I _r = 0.8) | 4x400 / 4x600 | 1x4/0 / 1x350 | # Recommended Upstream Protection and Cable Sizes for 1250 kW UPS **NOTE:** For a 1250 I/O cabinet, it is preferred to use flexible copper power cables with as small a diameter as possible. The number of power cables needed for this kW rating will make large and inflexible power cables more difficult to install. | | Maximum OCPD (A) | Cable size per phase (AWG/kcmil)
Copper / Aluminum | EGC cable size (AWG/kcmil) ⁹
Copper / Aluminum | |--------|-----------------------------|---|--| | Input | 2000 (I _r = 1.0) | 5x600 / 6x600 | 1x250 / 1x400 | | Bypass | 1600 (I _r = 1.0) | 4x600 / 5x600 | 1x4/0 / 1x350 | | Output | 1600 (I _r = 1.0) | 4x600 / 5x600 | 1x4/0 / 1x350 | ^{9.} If the conductors are run in conduits, there must be one conductor in each conduit. # Recommended Upstream Protection and Cable Sizes for 1500 kW UPS | | Maximum OCPD (A) | Cable size per phase (AWG/kcmil)
Copper / Aluminum | EGC cable size (AWG/kcmil) ¹⁰
Copper / Aluminum | |--------|--------------------|---|---| | Input | 2500 ¹¹ | 6x600/
8x600 | 1x350 / 1x400 | | Bypass | 2000 ¹¹ | 5x600/
6x600 | 1x250 / 1x350 | | Output | 2000 ¹¹ | 5x600/
6x600 | 1x250 / 1x350 | ## **Recommended Cable Sizes for Battery Cabinets** ## **AADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH All wiring must comply with all applicable national and/or electrical codes. The maximum allowable cable size is 350 kcmil. Failure to follow these instructions will result in death or serious injury. ## **Recommended Bolt and Lug Sizes** ## Recommended Bolt and Lug Sizes for Copper Cables for UPS | Cable Size | Terminal Bolt Diameter | Cable Lug Type | Crimping Tool | Die | |------------|------------------------|----------------|------------------|-----------------------| | 1/0 AWG | M12 x 35 mm | LCCF1/0-12-X | CT930 | CD-920-2/0 Black P45 | | 2/0 AWG | M12 x 35 mm | LCCF2/0-12-X | CT930 | CD-920-3/0 Orange P50 | | 3/0 AWG | M12 x 35 mm | LCCF3/0-12-X | CT930 | CD-920–4/0 Purple P54 | | 250 kcmil | M12 x 35 mm | LCCF250-12-X | CT-940CH/CT-2940 | CD-920–300 White P66 | | 300 kcmil | M12 x 35 mm | LCCF300-12-6 | CT-940CH/CT-2940 | CD-920-350 Red P71 | | 400 kcmil | M12 x 35 mm | LCCF400-12-6 | CT-940CH/CT-2940 | CD-920–500 Brown P87 | | 500 kcmil | M12 x 35 mm | LCCF500-12-6 | CT-940CH/CT-2940 | CD-920-500A Pink P99 | | 600 kcmil | M12 x 40 mm | LCCF600-12-6 | CT-940CH/CT-2940 | CD-920–750 Black P106 | ## Recommended Bolt and Lug Sizes for Aluminum Cables for UPS | Cable Size | Terminal Bolt Diameter | Cable Lug Type | Crimping Tool | Die | |------------|------------------------|----------------|---------------|-----------| | 2/0 AWG | M12 x 40 mm | LAB2/0-12-5 | CT930 | Olive P54 | | 3/0 AWG | M12 x 40 mm | LAB3/0-12-5 | CT930 | Ruby P60 | | 250 kcmil | M12 x 40 mm | LAB250-12-5 | CT930 | Red P71 | | 300 kcmil | M12 x 40 mm | LAB300-12-2 | CT930 | Blue P76 | | 400 kcmil | M12 x 40 mm | LAB400-12-2 | CT930 | Green P94 | ^{10.} If the conductors are run in conduits, there must be one conductor in each conduit. ^{11.} Long-time setting $(I_r) = 1.0$ | Cable Size | Terminal Bolt Diameter | Cable Lug Type | Crimping Tool | Die | |------------|------------------------|----------------|---------------|------------| | 500 kcmil | M12 x 40 mm | LAB500-12-2 | CT930 | Pink P99 | | 600 kcmil | M12 x 40 mm | LAB600-12-2 | CT930 | Black P106 | # Recommended Bolt and Lug Sizes for Copper Cables for Battery Cabinets ### One Hole Cable Lug | Cable size | Bolt size | Cable lug type | Crimp tool | Die | |---------------|-----------|----------------|------------|-----------------------| | 250 kcmil x 2 | M10x30 | LCB250-12-X | CT-930 | CD-920-250 Yellow P62 | | 350 kcmil | M10x30 | LCB350-12-X | CT-930 | CD-920-350 Red P71 | #### Two Hole Cable Lug | Cable size | Bolt size | Cable lug type | Crimp tool | Die | |---------------|-----------|----------------|------------|-----------------------| | 250 kcmil x 2 | M10x30 | LCC250-12-X | CT-930 | CD-920-250 Yellow P62 | | 350 kcmil | M10x30 | LCC350-12-X | CT-930 | CD-920-350 Red P71 | ## Inverter Short-Circuit Capabilities (Bypass not Available) ### IK1 - Short-Circuit between a Phase and Neutral #### 400 V IK1 | S [kVA] | Ik10ms [A] | lk30ms [A] | Ik100ms [A] | Ik500ms [A] | Ik1s [A] | Ik5s [A] | I ² t total [A ² s] | |---------|------------|------------|-------------|-------------|------------|--------------|---| | | Normal | | operation | | /Battery | | operation | 250 | 840 | 820 | 610 | 550 | 550 | 550 | 1539100 | | | /840 | /840 | /640 | /550 | /550 | /360 | /874180 | | 500 | 1680 /1680 | 1640 /1680 | 1220 /1280 | 1100 /1100 | 1100 /1100 | 1100
/720 | 6156400
/3496720 | | 750 | 2520 /2520 | 2460 /2520 | 1830 /1920 | 1650 /1650 | 1650 /1650 | 1650 /1080 | 13851900
/7867620 | ### 400 V IK1 (Continued) | S [kVA] | Ik10ms [A]
Normal
operation
/Battery
operation | Ik30ms [A]
Normal
operation
/Battery
operation | Ik100ms [A]
Normal
operation
/Battery
operation | Ik500ms [A]
Normal
operation
/Battery
operation | Ik1s [A]
Normal
operation
/Battery
operation | Ik5s [A]
Normal
operation
/Battery
operation | I ² t total [A ² s]
Normal
operation
/Battery
operation | |---------|--|--|---|---|--|--|---| | 1000 | 3360 /3360 | 3280 /3360 | 2440 /2560 | 2200 /2200 | 2200 /2200 | 2200 /1440 | 24625600
/13986880 | | 1250 | 4200 /4200 | 4100 /4200 | 3050 /3200 | 2750 /2750 | 2750 /2750 | 2750 /1800 | 38477500
/21854500 | | 1500 | 5040 /5040 | 4920 /5040 | 3660 /3840 | 3300 /3300 | 3300 /3300 | 3300 /2160 | 55407600
/31470480 | ### 480 V IK1 | S [kVA] | Ik10ms [A]
Normal
operation
/Battery
operation | lk30ms [A]
Normal
operation
/Battery
operation | Ik100ms [A]
Normal
operation
/Battery
operation | Ik500ms [A]
Normal
operation
/Battery
operation | lk1s [A]
Normal
operation
/Battery
operation | Ik5s [A]
Normal
operation
/Battery
operation | l ² t total [A ² s]
Normal
operation
/Battery
operation | |---------|--|--|---|---|--|--|---| | 250 | _ | - | - | - | - | _ | _ | | | /810 | /810 | /570 | /290 | /290 | /290 | /493600 | | 500 | - | - | _ | - | - | _ | _ | | | /1620 | /1620 | /1140 | /580 | /580 | /580 | /1974400 | | 750 | _ | _ | - | - | - | _ | _ | | | /2430 | /2430 | /1710 | /870 | /870 | /870 | /4442400 | | 1000 | _ | _ | - | - | - | _ | _ | | | /3240 | /3240 | /2280 | /1160 | /1160 | /1160 | /7897600 | | 1250 | _ | _ | - | _ | _ | _ | _ | | | /4050 | /4050 | /2850 | /1450 | /1450 | /1450 | /12340000 | | 1500 | _ | - | _ | _ | _ | _ | _ | | | /4860 | /4860 | /3420 | /1740 | /1740 | /1740 | /17769600 | ## IK2 - Short-Circuit between Two Phases ### 400 V IK2 | S [kVA] | Ik10ms [A]
Normal
operation
/Battery
operation | Ik30ms [A]
Normal
operation
/Battery
operation | Ik100ms [A]
Normal
operation
/Battery
operation | Ik500ms [A]
Normal
operation
/Battery
operation | Ik1s [A]
Normal
operation
/Battery
operation | Ik5s [A]
Normal
operation
/Battery
operation | I ² t total [A ² s]
Normal
operation
/Battery
operation | |---------|--|--|---|---|--|--|---| | 250 | 780 | 780 | 600 | 510 | 510 | 510 | 1312100 | | | /780 | /780 | /600 | /510 | /510 | /330 | /740520 | | 500 | 1560 /1560 | 1560 /1560 | 1200 /1200 | 1020 /1020 | 1020 /1020 | 1020
/660 | 5248400
/2962080 | | 750 | 2340 /2340 | 2340 /2340 | 1800 /1800 | 1530 /1530 | 1530 /1530 | 1530
/990 | 11808900
/6664680 | | 1000 | 3120 /3120 | 3120 /3120 | 2400 /2400 | 2040 /2040 | 2040 /2040 | 2040 /1320 | 20993600
/11848320 | | 1250 | 3900 /3900 | 3900 /3900 | 3000 /3000 | 2550 /2550 | 2550 /2550 | 2550 /1650 | 32802500
/18513000 | | 1500 | 4680 /4680 | 4680 /4680 | 3600 /3600 | 3060 /3060 | 3060 /3060 | 3060 /1980 | 47235600
/26658720 | ### 480 V IK2 | S [kVA] | Ik10ms [A]
Normal
operation
/Battery
operation | lk30ms [A]
Normal
operation
/Battery
operation |
Ik100ms [A]
Normal
operation
/Battery
operation | Ik500ms [A]
Normal
operation
/Battery
operation | Ik1s [A]
Normal
operation
/Battery
operation | Ik5s [A]
Normal
operation
/Battery
operation | I ² t total [A ² s]
Normal
operation
/Battery
operation | |---------|--|--|---|---|--|--|---| | 250 | 790 | 770 | 550 | 430 | 430 | 280 | 606450 | | | /790 | /770 | /550 | /280 | /280 | /280 | /460820 | | 500 | 1580 /1580 | 1540 /1540 | 1100 /1100 | 860 | 860 | 560 | 2425800 | | | | | | /560 | /560 | /560 | /1843280 | | 750 | 2370 /2370 | 2310 /2310 | 1650 /1650 | 1290 | 1290 | 840 | 5458050 | | | | | | /840 | /840 | /840 | /4147380 | | 1000 | 3160 /3160 | 3080 /3080 | 2200 /2200 | 1720 /1120 | 1720 /1120 | 1120 /1120 | 9703200
/7373120 | | 1250 | 3950 /3950 | 3850 /3850 | 2750 /2750 | 2150 /1400 | 2150 /1400 | 1400 /1400 | 15161250
/11520500 | | 1500 | 4740 /4740 | 4620 /4620 | 3300 /3300 | 2580 /1680 | 2580 /1680 | 1680 /1680 | 21832200
/16589520 | ## IK3 - Short-Circuit between All Three Phases ### 400 V IK3 | S [kVA] | Ik10ms [A]
Normal
operation
/Battery
operation | Ik30ms [A]
Normal
operation
/Battery
operation | Ik100ms [A]
Normal
operation
/Battery
operation | Ik500ms [A]
Normal
operation
/Battery
operation | Ik1s [A]
Normal
operation
/Battery
operation | Ik5s [A]
Normal
operation
/Battery
operation | I ² t total [A ² s]
Normal
operation
/Battery
operation | |---------|--|--|---|---|--|--|---| | 250 | 720 | 720 | 670 | 540 | 540 | 540 | 1507600
/711360 | | | /720 | /720 | /640 | /360 | /360 | /360 | // 11300 | | 500 | 1440 /1440 | 1440 /1440 | 1340 /1280 | 1080 | 1080 | 1080 | 6030400
/2845440 | | | | | | /720 | /720 | /720 | /2040440 | | 750 | 2160 /2160 | 2160 /2160 | 2010 /1920 | 1620 /1080 | 1620 /1080 | 1620 /1080 | 13568400
/6402240 | | 1000 | 2880 /2880 | 2880 /2880 | 2680 /2560 | 2160 /1440 | 2160 /1440 | 2160 /1440 | 24121600
/11381760 | | 1250 | 3600 /3600 | 3600 /3600 | 3350 /3200 | 2700 /1800 | 2700 /1800 | 2700 /1800 | 37690000
/17784000 | | 1500 | 4320 /4320 | 4320 /4320 | 4020 /3840 | 3240 /2160 | 3240 /2160 | 3240 /2160 | 54273600
/25608960 | ### 480 V IK3 | S [kVA] | Ik10ms [A]
Normal
operation
/Battery
operation | Ik30ms [A]
Normal
operation
/Battery
operation | Ik100ms [A]
Normal
operation
/Battery
operation | Ik500ms [A]
Normal
operation
/Battery
operation | Ik1s [A]
Normal
operation
/Battery
operation | Ik5s [A]
Normal
operation
/Battery
operation | I ² t total [A ² s]
Normal
operation
/Battery
operation | |---------|--|--|---|---|--|--|---| | 250 | 670 | 670 | 610 | 440 | 360 | 300 | 580600 | | | /660 | /660 | /610 | /440 | /440 | /300 | /589380 | | 500 | 1340 /1320 | 1340 /1320 | 1220 /1220 | 880 | 720 | 600 | 2322400 | | | | | | /880 | /880 | /600 | /2357520 | | 650 | 1742 /1716 | 1742 /1716 | 1586 /1586 | 1144 /1144 | 936 | 780 | 3924856 | | | | | | | /1144 | /780 | /3984209 | | 1000 | 2680 /2640 | 2680 /2640 | 2440 /2440 | 1760 /1760 | 1440 /1760 | 1200 /1200 | 9289600
/9430080 | | 1250 | 3350 /3300 | 3350 /3300 | 3050 /3050 | 2200 /2200 | 1800 /2200 | 1500 /1500 | 14515000
/14734500 | | 1500 | 4020 /3960 | 4020 /3960 | 3660 /3660 | 2640 /2640 | 2160 /2640 | 1800 /1800 | 20901600
/21217680 | ## **Torque Specifications** ## **AAWARNING** ### **HAZARD OF ELECTRIC SHOCK** All electrical connections must be torqued according to this table. Failure to follow these instructions can result in death, serious injury, or equipment damage. | Bolt size | Torque | | | |-----------|-----------------------|-----------------------------|--| | | UPS | Lithium-ion battery cabinet | | | M4 | _ | 1.7 Nm (1.25 lb-ft) | | | M6 | 5 Nm (3.69 lb-ft) | 5 Nm (3.69 lb-ft) | | | M8 | 17.5 Nm (12.91 lb-ft) | 14 Nm (10.33 lb-ft) | | | M10 | 30 Nm (22 lb-ft) | 30 Nm (22.13 lb-ft) | | | M12 | 50 Nm (36.87 lb-ft) | 46 Nm (33.93 lb-ft) | | ## **Environment** | | Operating | Storage | |--|---|--| | Temperature | UPS (I/O cabinet and power cabinets): 0 °C to 40 °C (32 °F to 104 °F) 0 °C to 50 °C (32 °F to 122 °F) when derated to 75% power ¹² | UPS (I/O cabinet and power cabinets): -25 °C to 55 °C (-13 °F to 131 °F) Lithium-ion battery cabinet: 0 °C to 40 °C (32 °F to 104 °F) | | | Lithium-ion battery cabinet: Recommended operating temperature is 18 °C to 28 °C (64 °F to 82 °F) | Battery modules: Recommended storage for battery modules is 20 °C (68 °F) or cooler (non-freezing) | | Relative humidity | UPS (I/O cabinet and power cabinets): 5-
95% non-condensing | UPS (I/O cabinet and power cabinets):10-
80% non-condensing | | | Lithium-ion battery cabinet: 0-95% non-condensing | Lithium-ion battery cabinet: 0-90% non-
condensing | | | | Lithium-ion battery modules:
Recommended storage for battery modules
is 40-80% non-condensing | | Elevation | UPS (I/O cabinet and power cabinets): 1000 m (3300 ft): 1.000 1500 m (5000 ft): 0.975 2000 m (6600 ft): 0.950 2500 m (8300 ft): 0.925 3000 m (10000 ft): 0.900 Lithium-ion battery cabinet: 0-3000 m (0-10000 feet) | UPS (I/O cabinet and power cabinets): 0-15000 m (0-50000 ft) Lithium-ion battery cabinet: ? | | Audible noise one meter (three feet) from unit | UPS (I/O cabinet and power cabinets): 62 dB 69.5 dB at 100% load for 400 V systems 68 dB at 100% load for 480 V systems | at 70% load | | Protection class | IP20 | | | Color | RAL 9003, gloss level 85% | | ^{12.} For temperatures between 40 °C (104 °F) and 50 °C (122 °F), the load power rating must be derated with 2.5% per °C of rated output power. Above 40 °C (104 °F) the minimum input voltage is 340 V, and from 380 V to 340 V, the charge power must be linearly derated from 12% to 1%. ## **Compliance** | | UPS | Battery Cabinet | |----------------------|--|---| | Safety | IEC 62040-1: 2017, Edition 2.0, Uninterruptible Power Systems (UPS) - Part 1: Safety requirements UL 1778 5th edition | IEC 62619:2017 Secondary cells and batteries containing alkaline or other non-acid electrolytes - Safety requirements for secondary lithium cells and batteries, for use in industrial applications | | | | IEC 62477-1:2012+A11:2014 Safety requirements for power electronic converter systems and equipment Part 1: General | | | | UL 1973:2022 Batteries for Use in Stationary, Vehicle Auxiliary and Light Electric Rail Applications | | | | UL 9540A:2019 Test Method for Evaluating Thermal
Runaway Fire Propagation in Battery Energy Storage
Systems | | EMC/EMI/RFI | IEC 62040-2: 2016, 3rd edition Uninterruptible Power Systems (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements C2 | IEC 62040-2:2016 Uninterruptible Power Systems (UPS) - Part 2: Electromagnetic compatibility (EMC) requirements C2 | | | FCC 15B, class A | FCC Part 15, Radio Frequency Devices, class A | | Performance | IEC 62040-3: 2011-03, 2nd edition Uninterruptible Power Systems (UPS) - Part 3: Method of specifying the performance and test requirements | - | | Environmental | IEC 62040-4: 2013-04, 1st edition Uninterruptible Power Systems (UPS) - Part 4: Environmental aspects | IEC 60068-2-1:2007 Environmental testing – Part 2-1:
Tests – Test A: Cold | | | – Requirements and reporting | IEC 60068-2-2:2007 Environmental testing – Part 2-2:
Tests – Test B: Dry heat | | | | IEC 60068-2-78:2012 Environmental testing – Part 2-78: Tests – Test Cab: Damp heat, steady state | | Markings | CE, C-Tick | CE, C-Tick | | | UL1778 Listing and CSA C22.2 NO.107.3 | ANSI/CAN/UL 1973 Listing | | Transportation | ISTA 2B | IEC60068-2-27:2008 Environmental testing – Part 2-
27: Tests – Test Ea and guidance: Shock | | | IEC 60721-4-2 Level 2M2 | IEC60068-2-31:2008 Environmental testing – Part 2-31: Tests – Test Ec: Rough handling shocks, primarily for equipment-type specimens | | | | IEC60068-2-64:2008 Environmental testing – Part
2-64: Tests – Test Fh: Vibration, broadband random and guidance | | Seismic | OSHPD, IBC2012 and CBC2013 to S _{DS} = 1.83 g | OSHPD, CBC 2019, S _{DS} =2.0g (z/h = 1); 2.5g (z/h = 0) | | Overvoltage category | III | II | | Earthing system | TN, TT, IT | | | Protective class | 1 | | | Pollution degree | 2 | | ## **Guidance for Organizing Battery Cables** **NOTE:** When the battery bank is placed remotely, the organizing of the cables is important to reduce voltage drop and inductance. The distance between the battery bank and the UPS must not exceed 200 m (656 ft). Contact Schneider Electric for installations with a longer distance. **NOTE:** To minimize the risk of electromagnetic radiation, it is highly recommended to follow the below guidance and to use grounded metallic tray supports. | Cable Length | (+++) | (+++ | (1) | | |--------------|--------------------|------------------|------------------|-------------| | <30 m | Not recommended | Acceptable | Recommended | Recommended | | 31–75 m | Not recommended | Not recommended | Acceptable | Recommended | | 76–150 m | Not recommended | Not recommended | Acceptable | Recommended | | 151–200 m | Not recommended | Not recommended | Not recommended | Recommended | ## **ESS Energy Storage System Weights and Dimensions** ### **UPS Weights and Dimensions** | Commercial reference | | Weight kg (lbs) | Height mm (in) | Width mm (in) | Depth mm (in) | |----------------------|--|--|----------------|---|---------------| | GVX500K1500GS | Total - Power cabinets - I/O cabinet | 1956 (4312)
2 x 540 (2 x 1190)
876 (1931) | 1970 (77.6) | 3200 (126.0)
2 x 600 (2 x 23.6)
2000 (78.7) | 900 (35.4) | | GVX750K1500GS | Total - Power cabinets - I/O cabinet | 2496 (5503)
3 x 540 (3 x 1190)
876 (1931) | 1970 (77.6) | 3800 (149.6)
3 x 600 (3 x 23.6)
2000 (78.7) | 900 (35.4) | | GVX1000K1500GS | Total - Power cabinets - I/O cabinet | 3036 (6693)
4 x 540 (4 x 1190)
876 (1931) | 1970 (77.6) | 4400 (173.2)
4 x 600 (4 x 23.6)
2000 (78.7) | 900 (35.4) | | GVX1250K1500GS | Total - Power cabinets - I/O cabinet | 3576 (7884)
5 x 540 (5 x 1190)
876 (1931) | 1970 (77.6) | 5000 (196.9)
5 x 600 (5 x 23.6)
2000 (78.7) | 900 (35.4) | | GVX1500K1500GS | Total - Power cabinets - I/O cabinet | 4116 (9074)
6 x 540 (6 x 1190)
876 (1931) | 1970 (77.6) | 5600 (220.5)
6 x 600 (6 x 23.6)
2000 (78.7) | 900 (35.4) | | GVX1750K1500GS | Total - Power cabinets - I/O cabinet | 4656 (10265)
7 x 540 (7 x 1190)
876 (1931) | 1970 (77.6) | 6200 (244.1)
7 x 600 (7 x 23.6)
2000 (78.7) | 900 (35.4) | ### **Battery Cabinet Weights and Dimensions** | (| Commercial reference | Weight kg (lbs) | Height mm (in) | Width mm (in) | Depth mm (in) | |---|----------------------|-----------------|----------------|---------------|---------------| | L | LIBSESMG17UL | 490 (1080) | 1970 (77.56) | 650 (25.59) | 587 (23.11) | ### **Junction Cabinet Weights and Dimensions** | Commercial reference | Weight kg (lbs) | Height mm (in) | Width mm (in) | Depth mm (in) | |----------------------|-----------------|----------------|---------------|---------------| | JC4 | 136 (300) | 1970 (77.56) | 622 (24.49) | 587 (23.11) | ## Clearance **NOTE:** Clearance dimensions are published for airflow and service access only. Consult with the local safety codes and standards for additional requirements in your local area. **NOTE:** The UPS system can be placed up against a wall with no requirement for rear or side access. **NOTE:** Clearance dimensions of Lithium-ion Battery Cabinet have been verified by UL 9540A 4th edition (project No. 4789548397, issued by UL on 2021-05-21). ### UPS with 1500 kW I/O Cabinet ### **Lithium-ion Battery Cabinet** * Rear clearance is only required for Lithium-ion battery cabinet with seismic anchoring. ## **Overview of Supplied Installation Kits** ## Installation Kits Shipped with the I/O Cabinet ### Installation Kit 0M-816661 | Part | Used in | Number of units | |---------------------------------------|---|-----------------| | Jack | Follow the receiving and unpacking manual to remove the cabinets from the pallet using this installation kit. | 1 | | Floor protection plate | | 1 | | Hexagonal socket for drilling machine | | 1 | ### Installation Kit 0M-821667 **NOTE:** The rear anchoring bracket is shipped on the pallet. | Part | Used in | Number of units | |------------------------|--|-----------------| | Rear anchoring bracket | Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s), page 47 | 1 | ### **Installation Kit 0H-9101** | Part | Used in | Number of
Units | |--|--|--------------------| | Angle for left side of the rear anchoring bracket 870-30411 | Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s), page 47 | 1 | | Angle for right side of the rear anchoring bracket 870-30412 | | 1 | | M8 x 20 hexagonal torx with washer | | 8 | | 1 mm leveling shims | | 30 | | Part | Used in | Number of
Units | |------------------------------|---|--------------------| | EMC cover left 0M-82316 | Position the Cabinets, page 50 | 1 | | | | | | EMC cover right 0M-98993 | | 1 | | | | | | M6 nut with washer | | 22 | | Cable ties for signal cables | Signal Cables, page 70 | 50 | | Temperature sensor 0M-1160 | Signal Cable Connections to Classic Battery Cabinets (Boards 0P6547, 0P6549, 0P6552), page 80 | 2 | | Terminator for modbus | Connect the Modbus Cables, page 88 | 2 | | | | | # **Installation Kit 0H-9161 for Single Mains** | Part | Used in | Number of
Units | |---|--|--------------------| | Vertical single mains busbar 880–99058 for L1 | Install the Single Utility/Mains Installation Kit 0H-9161, page 66 | 1 | | Vertical single mains busbar 880–99059 for L2 | | 1 | | Vertical single mains busbar 880–99057 for L3 | | 1 | | Horizontal single mains busbars 880–99060 | | 3 | | M10 nut with washer | | 24 | | M10 x 60 hexagonal torx with washer | | 36 | ## **Installation Kit 0H-1102** | Part | Used in | Number of units | |------------------------------------|---|-----------------| | Neutral busbar 880–5501 | Connect the Power Cables in a 480 V System, page 67 | 1 | | | | | | M8 x 35 hexagonal torx with washer | | 4 | | | | | | Anchor bolt 0M-98831 | Position the Cabinets, page 50 | 2 | | | | | # **Installation Kit 0M-99259** | Part | Used in | Number of
Units | |---|---|--------------------| | Front anchoring bracket for I/O cabinet | Mount the Front Anchoring Brackets, page 69 | 1 | | | | | # **Installation Kit 0H-1074** | Part | Used in | Number of
Units | |----------------------------|---|--------------------| | Optical fiber cable 0W7819 | Route the Signal Cables between the I/O Cabinet and the | 1 | | | Power Cabinets, page 70 | | | Optical fiber cable 0W7822 | | 1 | | | | | | Optical fiber cable 0W7827 | | 1 | | | | - | | Display cable 0W7853 | Do not install. Installation must be performed by Schneider Electric. | 1 | | | Scrineider Electric. | | | Display cable 0W7858 | | 1 | | | | | | Display cable 0W7859 | | 1 | | | | ₽ | ## **Installation Kit 0H-0889** | Part | Used in | Number of
Units | |---------------------|---------|--------------------| | PBUS 1 cable 0W7995 | | 1 | | | | | | PBUS 2 cable 0W7996 | | 1 | | | | | ## **Installation Kit 0H-9097** **NOTE:** Save this installation kit for the field service representative. The busbars will be installed by Schneider Electric during assembly service. ## **Installation Kit 0H-9128** **NOTE:** Save this installation kit for the field service representative. The busbars will be installed by Schneider Electric during assembly service. ## **Installation Kit 0H-9096** **NOTE:** Save this installation kit for the field service representative. The busbars will be installed by Schneider Electric during assembly service. ## **Installation Kit 0H-9129** **NOTE:** Save this installation kit for the field service representative. The busbars will be installed by Schneider Electric during assembly service. ## **Installation Kit 0M-92449** **NOTE:** Save this installation kit for the field service representative. The display will be installed by Schneider Electric during assembly service. # **Installation Kits Shipped with the Power Cabinet** # **Installation Kit 0H-9102** **NOTE:** These installation kit parts are shipped in the packaging of the power cabinet. | Part | Used in | Number of Units | |--|---|-----------------| | Rear anchoring bracket for power cabinet 0M-818242 | Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s), page 47 | 1 | | M8 x 20 hexagonal torx with washer | | 2 | | Front anchoring bracket for power cabinet 0M-816684 | Mount the Front Anchoring Brackets, page 69 | 1 | | Long top baying bracket 0M-821220 | Position the Cabinets, page 50 | 1 | | M6 x 16 torx screw with washer | | 15 | | M10 nut with washer | | 24 | |
M10 x 35 hexagonal torx with washer | | 12 | | 1 mm leveling shims | | 10 | | Ground interconnection busbar 880-99027 | Save for the field service representative. The busbars will be installed by Schneider Electric during assembly service. | 1 | | M8 nut with washer | | 4 | | M8 x 35 mm hexagonal torx with washer | | 4 | | Interconnection busbar 880-10146 and 880-9720 from power cabinet to power cabinet (neutral) | | 1 | | Interconnection busbar 0M-140035 power cabinet to power cabinet (battery +) | | 1 | | Part | Used in | Number of
Units | |---|---------|--------------------| | | | | | Interconnection busbar 0M-97886 power cabinet to power cabinet (output) | | 3 | | Interconnection busbar 0M-819336 power cabinet to power cabinet (battery -) | | 1 | | Interconnection busbar 0M-97885 power cabinet to power cabinet (input) | | 3 | # **Installation Kits Shipped with the Battery Cabinet** ## Accessory Kit 0M-95318: Busbar Kit **NOTE:** Save this accessory kit for the field service representative. The busbars will be installed by Schneider Electric during the start-up service. ## Accessory Kit 0M-95319: Cover Kit **NOTE:** Save this accessory kit for the field service representative. The covers will be installed by Schneider Electric during the start-up service. ## Accessory Kit 0M-95320: Cable Kit | Part Number | Description | Quantity | Used in | | |-------------|---|----------|---|--| | 0W76926 | Signal cable from battery module to battery module – standard | 15 | Note: Save these signal cables for the field service representative. These signal cables will be installed by | | | 0W76936 | Signal cable from battery module to battery module – long | 1 | Schneider Electric during the start-up service. | | | 0W76933 | Signal cable from battery module to RBMS | 1 | | | | 0W76928 | Signal cable from RBMS CAN 2 to RBMS CAN 1 in next battery cabinet | 1 | Route the Signal Cables to the
Switchgear, Rack BMS, and System
BMS Ports, page 102 | | | 0W76929 | Signal cable from MCCB AUX 1 to UPS | 1 | | | | 0W76934 | Signal cable from MCCB AUX 2 to MCCB AUX 1 in next battery cabinet | 1 | | | | 0W13444 | Signal cable from SGB I/O 1 to the UPS | 1 | | | | 0W13442 | Signal cable from SGB I/O 2 to the UPS | 1 | | | | 0W76972 | Signal cable from SGB I/O 1 to SGB I/O 1 between the battery cabinets | 1 | | | # Accessory Kit 0M-95331: Seismic Anchoring and Fuse Kit | Part Number | Description | Quantity | Used in | | |---------------------------------|--|----------|--|--| | 870-50102 Anchor parts | | 4 | Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s), | | | 870-51172 | Interconnection plate between seismic brackets | | | | | 803-0684 | M6 x 12 torx screw with washer | 4 | | | | 803-0686 | M6 x 16 torx with washer | 18 | Install the Rear Seismic Anchoring for
the UPS and the Battery Cabinet(s),
page 47 and Position and Interconnect
the Battery Cabinets, page 61. | | | TME00409 500 A fast acting fuse | | 3 | Note: Save for the field service representative. The fuses will be | | | HUA29593 | Washer | 6 | installed by Schneider Electric during the start-up service. | | | HUA13751 | M12 x 16 hexagonal screw | 6 | | | | HUA41574 | 3 A rated fuse | 2 | | | ## **Installation Procedure** - 1. UPS: Follow the receiving and unpacking manual to remove the cabinets from the pallet. - 2. UPS: Position the Cabinets, page 50. - 3. UPS and Lithium-ion battery cabinets: Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s), page 47. - 4. UPS: Prepare the I/O cabinet for power cables. Follow one of the procedures: - Prepare the I/O Cabinet for Power Cables in Top Cable Entry Systems, page 64, OR - Prepare the I/O Cabinet for Power Cables in Bottom Cable Entry Systems, page 65. - UPS: For single mains systems only: Install the Single Utility/Mains Installation Kit 0H-9161, page 66. - 6. UPS: Connect the Power Cables in a 480 V System, page 67. - 7. UPS: Mount the Front Anchoring Brackets, page 69. - 8. UPS: Route the Signal Cables between the I/O Cabinet and the Power Cabinets, page 70. - 9. UPS: Prepare for External Signal Cables, page 75. - 10. UPS: Connect the Emergency Power Off (EPO), page 81. - 11. UPS: Only for external synchronization: Connect External Synchronization, page 82. - 12. UPS: Connect Equipment to Input Contacts and Output Relays, page 85. - 13. UPS: Connect the Modbus Cables, page 88. - 14. UPS: Final mechanical assembly: - Final Mechanical Assembly of the I/O Cabinet, page 91, AND - Final Mechanical Assembly of the Power Cabinets, page 95. - 15. Lithium-ion battery cabinet: Install the Battery Modules in the Battery Cabinet, page 96. - **16.** Lithium-ion battery cabinet: Position and Interconnect the Battery Cabinets, page 61. - 17. Lithium-ion battery cabinet: Install the Front Seismic Anchoring, page 63. - **18.** Lithium-ion battery cabinet: Install the Battery Modules in the Battery Cabinet, page 96. - 19. Lithium-ion battery cabinet: Connect the Power Cables, page 98. - 20. Lithium-ion battery cabinet: Route the Signal Cables to the Switchgear, Rack BMS, and System BMS Ports, page 102. # **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Startup must only be performed by Schneider Electric. Failure to follow these instructions will result in death or serious injury. For moving or decommissioning the UPS or the Lithium-ion battery cabinets after installation has been completed, see Decommission or Move the UPS to a New Location, page 110 or Decommission or Move the Battery Cabinet to a New Location, page 115. # **Prepare for Installation** 1. Remove the indicated cover. 2. Remove the two transparent covers. 3. Remove the plate in front of the battery shelves. 4. Remove the four boxes with accessory kits from the bottom of the cabinet. Refer to for more information on the accessory kits. # Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s) ## **▲ DANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Leave the UPS system and battery cabinets covered while making anchoring holes to prevent dust or other conductive particles from entering the system. Failure to follow these instructions will result in death or serious injury. ## **ADANGER** #### **HAZARD OF TILTING** All rear and front anchoring brackets must be installed. Failure to follow these instructions will result in death or serious injury. ## **▲** DANGER #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Leave the UPS system covered while making anchoring holes to prevent dust or other conductive particles from entering the system. Failure to follow these instructions will result in death or serious injury. UPS: Use the rear anchoring bracket that was attached to the rear of the I/O cabinet pallet. Fasten the two plates from the installation kit 0H-9101 to the rear anchoring bracket of the I/O cabinet with M8 bolts. Note the direction of the plates. 2. Place the rear anchoring brackets for the I/O cabinet and the power cabinets in the final installation area. - 3. Interconnect the rear anchoring brackets using the provided screws and bolts. - 4. Mark the hole locations. - 5. Drill anchoring holes according to the national and local requirements. - 6. Mount the rear anchoring brackets to the floor. Bolts are not supplied. - 7. Use a bubble-leveler to ensure that the rear anchoring brackets are level. Use the provided leveling shims if necessary. - 8. Lithium-ion battery cabinet: Mount the rear seismic assembly (4 x 870-50102 and M6 x 16 torx screws from accessory kit 0M-95331 and the rear shipping bracket) to the floor. Use appropriate hardware for the floor type the hole diameter in the rear seismic bracket is Ø14 mm. The minimum requirement is M12 strength grade 8.8 hardware. #### **Rear View** 9. In systems with more battery cabinets, interconnect the seismic assemblies with the interconnection plate 870-51172 from the accessory kit 0M-95331. #### **Rear View** 10. Remove the indicated screws. #### **Rear View** 11. Remove the rear seismic bracket. #### **Rear View** 12. Install the rear seismic bracket on the battery cabinet(s). ### **Rear View** # **Position the Cabinets** ## **ADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not step/walk on top of the cabinets. Failure to follow these instructions will result in death or serious injury. **NOTE:** The cabinets must be moved to the final installation area individually and cannot be moved after they have been interconnected. ## **ADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH A minimum of one power cabinet and a maximum of four power cabinets must be placed on each side of the I/O cabinet. Failure to follow these instructions will result in death or serious injury. Install the cover 0M-98993 from the installation kit on the right-most power cabinet. 2. Install the interconnection cover 0M-82316 from the installation kit on the left-most power cabinet. Remove the side panels from the I/O cabinet and install them on the left side of the left-most power cabinet and on the right side of the right-most power cabinet. # **AAWARNING** ### **HAZARD OF ARC FLASH** - Do not make mechanical changes to the product (including removal of cabinet parts or drilling/cutting of holes) that are not described in the installation manual. - Move and install the indicated side panels in all installation types (including parallel installations with no air gap between the frames or in installations where the right-most power cabinet and/or the
left-most power cabinet is placed against a wall). Failure to follow these instructions can result in death, serious injury, or equipment damage. 4. Remove and dispose of the indicated transport bracket from the left side of the I/O cabinet. 5. Remove and dispose of the indicated transport bracket from the right side of the I/O cabinet. 6. Remove and dispose of the indicated transport bracket from the right side of the I/O cabinet. 7. Remove the two metal plates from the I/O cabinet. 8. Push the I/O cabinet into position against the rear anchoring bracket – the I/O cabinet will connect to the conic outcroppings on the rear anchoring bracket. - 9. Fasten the cabinet to the rear anchoring bracket with the two anchor bolts from the installation kit. Torque to 50 Nm (36.87 lb-ft). - Push the power cabinets one by one into position against the rear anchoring brackets – the cabinets will connect to the conic outcroppings on the brackets. # **ACAUTION** #### **RISK OF EQUIPMENT DAMAGE** When pushing the power cabinet into position, push on the frame to avoid damaging the signal cables. Failure to follow these instructions can result in injury or equipment damage. - 11. Fasten the cabinets to the rear anchoring brackets by tightening the bolts on the front of the cabinets. Torque to 50 Nm (36.87 lb-ft). - 12. Lower the two front feet on all cabinets until they connect with the floor use a bubble-leveler to ensure that the cabinets are level. Use the provided levelling shims if necessary. - 13. Install the top baying brackets on the top of the cabinets and fasten with the provided screws. #### Front View of the I/O Cabinet and Two Power Cabinets 14. Remove the three indicated plates in the left side of the I/O cabinet. 15. Remove the two indicated plates in the left side of the I/O cabinet. 16. Mount the M6 screws from the installation kit from right to left in the four marked locations between the I/O cabinet and the power cabinet placed to the left of the I/O cabinet. # From the Power Cabinet on the Left Side of the I/O Cabinet to the I/O Cabinet - 17. Mount the M6 screws from the installation kit from right to left to tighten the cabinets together: - in the five marked positions between the power cabinets. - in the four marked positions between the I/O cabinet and the power cabinet on the right side of the I/O cabinet. #### **From Power Cabinet to Power Cabinet** From Power Cabinet on the Right Side of the I/O Cabinet to the I/O Cabinet 18. Verify that the right-most power cabinet and the left-most power cabinet for the I/O cabinet has the covers (0M-98993 and 0M-82316) and the side panels installed before continuing. ### 1500 kW I/O with Maximum Number of Power Cabinets # **Position and Interconnect the Battery Cabinets** **NOTE:** This procedure describes how to position and interconnect several battery cabinets. If your system only has one battery cabinet, you only need to follow step 2 and step 3. 1. Remove the side panels that are adjacent to the other battery cabinets. 2. Push the right-most battery cabinet into position. For seismic anchoring, ensure that the rear seismic bracket connects to the rear anchors. ### **Rear View** 3. Lower the levelling feet until they connect with the floor - use a bubble-leveler to ensure that the cabinet is level. - 4. Push the second right-most battery cabinet into position, align with the seismic anchoring (if any), and level the battery cabinet as described in step 2 and step 3. - 5. Install the ten interconnection screws (five in the front and five in the rear) between the two battery cabinets. **NOTE:** To reach the five interconnection screws in the rear of the leftmost battery cabinet, the left side panel can be removed. Reinstall the left side panel on the left-most battery cabinet after interconnection. 6. Push the third battery cabinet into position, align with the seismic anchoring (if any), level the battery cabinet, and interconnect with the other battery cabinets as described in step 2, step 3, and step 5. Continue until all the battery cabinets are in place, levelled, and interconnected. # **Install the Front Seismic Anchoring** 1. Install the front seismic bracket (front shipping bracket) on the battery cabinet. 2. Anchor the front seismic bracket to the floor using appropriate hardware for the floor type – the hole diameter in the front seismic bracket is ø14 mm. The minimum requirement is M12 strength grade 8.8 hardware. **NOTE:** Floor anchoring bolts are not supplied. # Prepare the I/O Cabinet for Power Cables in Top Cable Entry Systems ## **▲ DANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not drill/punch holes for cables or conduits with the gland plates installed and do not drill/punch holes in close proximity to the UPS. Failure to follow these instructions will result in death or serious injury. 1. Loosen the bolts and remove the gland plates from the top of the I/O cabinet. #### Front View of the I/O Cabinet - 2. Drill or cut holes for cables/conduits in the top gland plate. - 3. Install conduits and reinstall the top gland plate. ## **▲** DANGER HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Ensure that there are no sharp edges that can damage the cables. Failure to follow these instructions will result in death or serious injury. # Prepare the I/O Cabinet for Power Cables in Bottom Cable Entry Systems ## **▲** DANGER #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not drill/punch holes for cables or conduits with the gland plates installed and do not drill/punch holes in close proximity to the UPS. Failure to follow these instructions will result in death or serious injury. 1. Loosen the bolts and remove the gland plates in the bottom of the I/O cabinet. #### Front View of the I/O Cabinet - 2. Drill or cut holes for cables/conduits in the bottom gland plate. - 3. Install conduits and reinstall the bottom gland plate. ## **ADANGER** ### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Ensure that there are no sharp edges that can damage the cables. Failure to follow these instructions will result in death or serious injury. # Install the Single Utility/Mains Installation Kit 0H-9161 NOTE: This procedure is only applicable to single utility/mains systems. 1. Install the single utility/mains installation kit 0H-9161 between the input and bypass busbars. Connect L1 to L1, L2 to L2, and L3 to L3. **NOTE:** Two busbars are required for each connection. #### Front View of the I/O Cabinet # Connect the Power Cables in a 480 V System The grounding electrode conductor must be installed per NEC 250.30 and sized per NEC 250.66. 1. Connect the equipment grounding conductor/PE to the PE busbar. - 2. Only applicable to dual mains systems: Connect the bypass cables. - 3. Connect the output cables. - 4. Connect the input cables. 5. For high impedance grounding systems only: **NOTE:** For high impedance grounding systems, the installation must include a ground-fault detection circuitry. - a. Rotate the jumper busbar so it does not create a connection. - b. Connect an external impedance between the "E" terminal and the equipment grounding conductor according to NEC 2014 article 250.36. - 6. Connect the battery cables to the battery + and battery terminals. # **Mount the Front Anchoring Brackets** 1. Fasten the front anchoring brackets to the front of the cabinets using the provided bolts. 2. Anchor the front anchoring brackets to the floor. NOTE: Floor anchoring bolts are not supplied. # **Signal Cables** ## **ACAUTION** #### **RISK OF EQUIPMENT DAMAGE** - All Class 2/SELV signal cables shall be double insulated/jacket cable and minimum rated for 30 VDC. All non-Class 2/non-SELV signal cables shall be double insulated/jacket cable and minimum rated for 600 VAC. - The cable supplying the shunt trip shall be a jacket cable and rated for 600 VAC. The cables shall be sized taking the cable voltage drop and the recommendation of the shunt trip manufacturer into consideration. Failure to follow these instructions can result in injury or equipment damage. # Route the Signal Cables between the I/O Cabinet and the Power Cabinets **NOTE:** Do not connect the signal cables. Signal cables will be connected by Schneider Electric during the assembly service. #### Overview of Signal Cables between the Power Cabinets and the I/O Cabinet 1. Remove the plate in the upper right corner of the I/O cabinet. - 2. Remove the three plates (a-c) on all power cabinets. - 3. Remove and dispose of all 0W11379 signal cables connected to the X0002 terminals of all power cabinets. - 4. Route the signal cable connected in the left side of the I/O cabinet to the X0002 terminal in the power cabinet to the left of the I/O cabinet. 5. Route the signal cable connected in the right side of the I/O cabinet to the X0002 terminal in the power cabinet to the right of the I/O cabinet. 6. Route the signal cable 0W7819 from 0P6516 terminal J1005 in power cabinets 1–3 (on the left side of the I/O cabinet) and into the I/O cabinet as shown on the illustration and fasten the cable. 7. Route the signal cable 0W7822 from 0P6516 terminal J1005 in power cabinet 4 and power cabinets 5–6 if available (on the right side of the I/O cabinet) and into the I/O cabinet as shown on the illustration and fasten the cable. 8. In redundant systems only, route the signal cable 0W7827 from 0P6516 terminal J1005 in power cabinet 7 and into the I/O cabinet and fasten the cable. ## **Prepare for External Signal Cables** #### Class 2/SELV | Board | Terminal | Description | See | |--------|-------------------------------------|-------------------|---| | 0P6548 | J5502-J5506, J5508, J5510–
J5512 | Input contacts | Connect Equipment to Input
Contacts and Output Relays,
page 85 | | 0P6548 | J5520-J5525, J5528 | Output relays | | | 0P6548 | J5527 | Kirk key control | Signal Cable Connections to the Switchgear (Boards
0P6547, 0P6548, 0P6549), page 79 | | 0P6548 | J5514 | UOB lamp control | | | 0P6548 | J5515 | MBB lamp control | | | 0P6548 | J5516 | SIB lamp control | | | 0P6548 | J5517 | SSIB lamp control | | | 0P6548 | J5509 | UOB 2 | | | 0P6547 | J4931-J4932 | 24 V SELV supply | | | 0P6547 | J4936-J4938 | EPO | Connect the Emergency Power Off (EPO), page 81 | | 0P3643 | PBUS 1 and PBUS 2 | PBUS | | | 0P6502 | | Modbus | Connect the Modbus Cables, page 88 | #### Non-Class 2/Non-SELV | Board | Terminal | Description | See | |--------|---------------------------|------------------------------|---| | 0P6547 | J4939-J4941 ¹³ | Output relays | Connect Equipment to Input
Contacts and Output Relays,
page 85 | | 0P6549 | J5607 | MBB | Signal Cable Connections to the Switchgear (Boards 0P6547, 0P6548, 0P6549), page 79 | | 0P6549 | J5608 | SIB | | | 0P6549 | J5620 | SSIB | | | 0P6549 | J5621 | UOB | | | 0P6549 | J5622 | UIB | | | 0P6549 | J5611-J5613 | External synchronization | Connect External
Synchronization, page 82 | | 0P6548 | J5529 | Battery temperature sensor 1 | Signal Cable Connections to Classic Battery Cabinets (Boards 0P6547, 0P6549, 0P6552), page 80 | | 0P6549 | J5609 | Battery breaker 1 | | | 0P6549 | J5610 | Battery breaker 2 | | | 0P6547 | J4942-J4943 | 24 V supply 1 | | | 0P6547 | J4929-J4930 | 24 V supply 2 | 7 | | 0P6547 | J4923 | DC shunt trip 1 | | | 0P6547 | J4924 | DC shunt trip 2 | | | 0P6552 | J9019 | Battery breaker 3 | | | 0P6552 | J9020 | Battery breaker 4 | | | 0P6552 | J9021 | Battery temperature sensor 2 | | | 0P6552 | J9022-J9023 | 24 V supply 3 | | | 0P6552 | J9024-J9025 | 24 V supply 4 | | ^{13.} These output relays can also be Class 2/SELV but the three output relays must have identical reference. 1. Remove the four indicated plates. 2. Remove the indicated plate for routing of non-Class 2/non-SELV cables. 3. **For bottom cable entry only**: remove the plate in front of the cable channel for non-Class 2/non-SELV cables. - 4. **For bottom cable entry only**: loosen the two screws on the right side of the box and remove the box. - 5. **For bottom cable entry only**: loosen the two screws behind the box and lift out the box. 6. Remove the two gland plates from either the top or the bottom of the I/O cabinet and drill holes for the applicable Class 2/SELV and non-Class 2/non-SELV cables in the table below. Install conduits and reinstall the plates. - 7. In installations with three or four battery banks, remove the top gland plate in the left corner of the I/O cabinet and drill holes for the applicable non-Class 2/ non-SELV cables below. Install conduits and reinstall the plates. - 8. Route the cables through the top or bottom and to the boards as shown on the illustration. **NOTE:** Do not connect the signal cables. Signal cables will be connected by Schneider Electric during the assembly service. # Signal Cable Connections to the Switchgear (Boards 0P6547, 0P6548, 0P6549) **NOTE:** The unit output breaker UOB must include two separated AUX switches. **NOTE:** The solenoid key release unit (SKRU) is only applicable to 480 V systems. All circuits connected must have the same 0 V reference. # Signal Cable Connections to Classic Battery Cabinets (Boards 0P6547, 0P6549, 0P6552) **NOTE:** The illustration below shows a system with four battery banks, each consisting of one classic battery cabinet. Connect signal cables according to the number of classic battery cabinets in your installation. If the battery bank is consisting of two classic battery cabinets, connect signal cables between the two classic battery cabinets in one battery bank as shown. #### **Battery Bank** ## Signal Cable Connections to Battery Breaker Cabinet (Boards 0P6547, 0P6548, 0P6549) ## **Connect the Emergency Power Off (EPO)** Do not connect any circuit to the EPO terminal block unless it can be confirmed that the circuit is Class 2/SELV. All circuits connected must have the same 0 V reference. The EPO input supports 24 VDC. - 1. Route the cables from your EPO through the top or bottom of the I/O cabinet and to the EPO terminals J4936–J4938 on 0P6547 as shown in Prepare for External Signal Cables, page 75. - 2. Connect the building EPO to the terminal block according to one of the options below. **NOTE:** Do not connect the terminal block to the board. Signal cables will be connected by Schneider Electric during the assembly service. ## **Connect External Synchronization** The maximum voltage for external synchronization is equal to the input voltage range given in the specifications. The non-Class 2/non-SELV cables for external synchronization shall be a jacket cable and rated for 600 VAC. - 1. Route the external synchronization cables through the top or bottom of the I/O cabinet to 0P6549 as shown in Prepare for External Signal Cables, page 75. - 2. Connect the three phases to the terminal block: **NOTE:** The phases from the synchronization source must be protected by a fuse of maximum 0.5 A. **NOTE:** Do not connect the terminal block to the board. Signal cables will be connected by Schneider Electric during the assembly service. - a. Connect L1 to J5611 on 0P6549. - b. Connect L2 to J5612 on 0P6549. - c. Connect L3 to J5613 on 0P6549. # Signal Cable Connections for Basic UPS Synchronization to a Fixed Voltage Source (Boards 0P6548, 0P6549) # Signal Cable Connections for Dual UPS Synchronization with a Floating Synchronization Master (Boards 0P6548, 0P6549) 990-914302A-001 # Signal Cable Connections for Fixed Parallel Synchronization Master (Boards 0P6548, 0P6549) ## **Connect Equipment to Input Contacts and Output Relays** - 1. Route the signal cables from your contacts/relays through the top or bottom of the I/O cabinet and to the boards in the right side of the I/O cabinet as shown in Prepare for External Signal Cables, page 75. - 2. Connect your equipment to the terminal blocks of the input contacts and/or output relays. Make a clear identification of the signal cables connected. **NOTE:** Do not connect the terminal block to the board. Signal cables will be connected by Schneider Electric during the assembly service. ## **Overview of Input Contacts and Output Relays** #### **Input Contacts** Do not connect any circuit to the input contacts unless it can be confirmed that the circuit is Class 2/SELV. All circuits connected must have the same 0 V reference. The input contacts support 24 VDC 10 mA. The switch SW5500 on 0P6548 is used to select between internal SELV supply for inputs (standard setting) and external supply¹⁴. If external supply is selected, the supply must be connected to J5530. | Name | Description | Location | |------------------|---------------------------------------|-------------------------------------| | IN 1 (Contact 1) | Configurable input contact | 0P6548 terminal J5502 ¹⁵ | | IN 2 (Contact 2) | Configurable input contact | 0P6548 terminal J5503 ¹⁵ | | IN 3 (Contact 3) | Configurable input contact | 0P6548 terminal J5504 ¹⁵ | | IN 4 (Contact 4) | Configurable input contact | 0P6548 terminal J5505 ¹⁵ | | IN 5 (Contact 5) | Configurable input contact | 0P6548 terminal J5510 ¹⁵ | | IN 6 | UOB redundant AUX contact | 0P6548 terminal J5509 ¹⁵ | | IN 7 | Transformer temperature switch | 0P6548 terminal J5508 ¹⁵ | | IN 8 | External bonding contact | 0P6548 terminal J5507 ¹⁵ | | IN 9 | Forced external synchronization input | 0P6548 terminal J5506 ¹⁵ | | IN 10 | External synchronization requested | 0P6548 terminal J5511 ¹⁵ | | IN 11 | Use static bypass standby | 0P6548 terminal J5512 ¹⁵ | | IN 14 | MegaTie | 0P6552 terminal J9027 ¹⁵ | #### **Output Relays** **NOTE:** Maximum 250 VAC 5 A must be connected to the output relays. ^{14.} An external supply is useful in parallel systems where inputs are connected between different UPSs. This is to have a common reference and to avoid cross currents. ^{15.} Class 2/SELV wiring All external circuitry must be fused with maximum 5 A fast acting fuses. | Name | Description | Location | |------------------|---|-------------------------------------| | OUT 1 (Relay 1) | Configurable output relay | 0P6547 terminal J4939 | | OUT 2 (Relay 2) | Configurable output relay | 0P6547 terminal J4940 | | OUT 3 (Relay 3) | Configurable output relay | 0P6547 terminal J4941 | | OUT 4 | Forced external synchronization output | 0P6548 terminal J5520 ¹⁶ | | OUT 5 | MegaTie | 0P6548 terminal J5521 ¹⁶ | | OUT 6 | External synchronization requested output | 0P6548 terminal J5522 ¹⁶ | | OUT 7 | UPS in inverter ON | 0P6548 terminal J5523 ¹⁶ | | OUT 8 (Relay 4) | Configurable output relay | 0P6548 terminal J5524 ¹⁶ | | OUT 9 (Relay 5) | Configurable output relay | 0P6548 terminal J5525 ¹⁶ | | OUT 10 (Relay 6) | Configurable output relay | 0P6548 terminal J5528 ¹⁶ | | OUT 14 | Bonding contactor | 0P6552 terminal J9029 ¹⁶ | **NOTE:** Refer to the operation manual for configuration options. ^{16.} Class 2/SELV wiring ## **External Communication** The following interfaces are supported: A. Two smart slots for optional network management cards (AP9630, AP9631, AP9635CH). **NOTE:** If the input dry contact AP9810 is connected to AP9631 or AP9635CH, the total length of cables for connected equipment must not exceed 30 m (98 ft). Use the plate for shielding. - B. Modbus and modbus dip switch settings. - C. Network/ethernet. #### Front View of the I/O Cabinet 990-914302A-001 #### **Connect the Modbus Cables** **NOTE:** Terminators for Modbus connection is provided in the installation kit 0H-9101. ## Front View of the I/O Cabinet in Top Cable Entry Systems ## Front View of the I/O Cabinet in Bottom Cable Entry Systems 1. Route the cables as shown on the illustrations. 2. Connect the Modbus cables. Use either 2-wire or 4-wire connection. Shield the cables as shown. **NOTE:** Shielded cables must be used for Modbus connections. The shield connection to the ground must
be as short as possible (ideally below 1 cm). All Modbus signal cables shall be double insulated/jacket cable and minimum rated for 30 VDC. #### 2-Wire Connection with One UPS #### **Example: 2-Wire Connection with Two UPSs** #### **Example: 4-Wire Connection with One UPS** #### **Example: 4-Wire Connection with Two UPSs** 3. Set the Modbus dip switches to match your installation. ## Final Mechanical Assembly of the I/O Cabinet #### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH All panels and covers must be properly reinstalled prior to energizing the UPS. Failure to follow these instructions will result in death or serious injury. 1. Lift up the Class 2/SELV cables. #### Front View of the I/O Cabinet - 2. Reinstall the indicated box over the non-Class 2/non-SELV cables. - 3. Reinstall the indicated box over Class 2/SELV cables. #### Front View of the I/O Cabinet 4. Reinstall the plate over the cable channel for non-Class 2/non-SELV cables. 5. Reinstall the two plates in the left side. #### Front View of the I/O Cabinet 6. Reinstall the plate in the right side. #### Front View of the I/O Cabinet 7. Reinstall the six plates in the left and right sides of the I/O cabinet. #### Front View of the I/O Cabinet 8. Reinstall the two metal plates. #### Front View of the I/O Cabinet 9. Close the front doors. ## **Final Mechanical Assembly of the Power Cabinets** #### **AADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH All panels and covers must be properly reinstalled prior to energizing the UPS. Failure to follow these instructions will result in death or serious injury. 1. Reinstall the three plates in the given order (a-c) on each power cabinet. ## **Install the Battery Modules in the Battery Cabinet** **Type A Battery Module** **Type B Battery Module** ## **AAWARNING** #### HAZARD OF INJURY AND ELECTRIC SHOCK Be careful when installing and removing the battery modules (>17 kg). Failure to follow these instructions can result in death, serious injury, or equipment damage. 1. Install the battery modules on the shelves from top to bottom. **NOTE:** Pay special attention to the location of type A and type B battery modules. #### Battery Configurations for Battery Cabinets with 17, 16, 13, and 10 Battery Modules 2. Reinstall the plate in front of the battery shelves. ## **Connect the Power Cables** #### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not drill or punch holes with the gland plates installed and do not drill or punch holes in close proximity to the battery cabinet. Failure to follow these instructions will result in death or serious injury. 1. Remove the gland plates. 2. Drill or punch holes for cables/conduits in the rear gland plate according to the label on the gland plate. #### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Ensure that there are no sharp edges that can damage the cables. Failure to follow these instructions will result in death or serious injury. 3. Install conduits (if applicable) and reinstall the gland plates. - 4. Route the power cables through the gland plate and connect to the terminals: - a. Connect the PE cable to the PE terminal/Connect the EGC cable to the grounding terminal. - For installations with two hole cable lugs only, temporarily remove the protection cover. **NOTE:** The protection cover must be reinstalled when the DC- cable has been connected. c. Connect the DC+ and DC- cables to the DC+ and DC- terminals. Connect the power cables in the UPS. If more battery cabinets are part of the solution, connect all battery cabinets to the UPS according to the diagram below. **NOTE:** If the combined short circuit current of the battery cabinets exceeds the short circuit rating of the UPS, a pull box with fuses or an external box with a battery breaker must be installed. Please contact Schneider Electric for more information and refer to the submittal drawings for your specific UPS. #### 2-Wire Connection #### 6. Reinstall the two transparent covers. ## **Overview of Communication Interface** - A. TCP/IP - B. DRY CONTACT ports - C. SMPS I/O - D. CAN I/O - E. RS485 - F. System BMS CAN I/O - G. DC OUT 1 and DC OUT 2 - H. Reset switch - I. Start-up button - J. DC IN 1 and DC IN 2 - K. Status LEDs - L. CAN bus loop termination resistor switch - M. CAN 1 port, CAN 2 port - N. Module - O. EPO - P. PSU 1 LED - Q. PSU 2 LED - R. SG IO 1 - S. SG IO 2 - T. MCCB AUX 1 - U. MCCB AUX 2 # Route the Signal Cables to the Switchgear, Rack BMS, and System BMS Ports #### **AADANGER** #### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Do not drill or punch holes with the gland plates installed and do not drill or punch holes in close proximity to the battery cabinet. Failure to follow these instructions will result in death or serious injury. **NOTE:** Please refer to the UPS submittal drawings to get a complete overview of the connections before preparing for and routing the signal cables. 1. Remove the gland plates for signal cables. 2. Drill or punch holes for cables/conduits and install conduits (if applicable). #### **AADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Ensure that there are no sharp edges that can damage the cables. Failure to follow these instructions will result in death or serious injury. 3. The provided SELV signal cable 0W13444 and the ELV signal cables 0W76929 and 0W13442 are 5 m (16.4 ft) long. You can extend the length of the three signal cables if the distance to the UPS is more than the expected 5 m (16.4 ft). Follow one of the instructions below: #### Signal cable specifications | 0W13444 | 4 conductors, 22 AWG, 600 V ETFE UL10086, strand, 90 °C | | |---------|--|--| | 0W76929 | 2 conductors, 24 AWG, 600 V ETFE UL10086, double insulation, strand, 90 °C | | | 0W13442 | 2 conductors, 22 AWG, 600 V ETFE UL10086, double insulation, strand, 90°C | | The provided signal cable is long enough to reach between the battery cabinet and the UPS: Remove the male adapter connector from the end of the signal cables and continue to the next step. OR The provided signal cable is NOT long enough to reach between the battery cabinet and the UPS: Remove the female connector and the male adapter connector from the end of the signal cable, shorten the signal cable to 120 mm (4.7 in) length, and reattach the labels and the female connector and male adapter connector to the signal cable. Attach a signal cable¹⁷ (not provided) to the male adapter connector in the correct length to reach from the battery cabinet to the UPS. As an alternative, you can also crimp the signal cable extensions. Ensure that the crimp point is inside the battery cabinet, not in conduits or cable trays outside the battery cabinet. Select the extension signal cables according to the Signal cable specifications. 4. Route the SELV signal cable 0W13444 and the ELV signal cables 0W76929 and 0W13442 into the battery cabinet and to the switchgear ports. Do not connect the signal cables, Schneider Electric service will complete the connections during start-up. #### With Provided Signal Cables 5. Route the signal cable 0W76928, 0W76934, and 0W76972 through the openings in the sides of the battery cabinets and to the ports in the rack BMS and the switchgear ports. Do not connect the signal cables, Schneider Electric service will complete the connections during start-up. NOTE: All cables between rack BMS and rack BMS as well as between system BMS and rack BMS are considered Class 2/SELV. 104 990-914302A-001 6. Reinstall the plate in front of the battery breaker. - 7. Reinstall the front door of the battery cabinet. - 8. Install the temperature sensor provided with the UPS above the battery cabinet, approximately 300 mm (12 in) from the top. Route the signal cable to the UPS and connect according to the instructions in the UPS installation manual. **NOTE:** The temperature sensor measures the ambient temperature. Do not place the temperature sensor close to external heating or cooling equipment which may give an incorrect measurement of the ambient temperature. # Overview of Signal Cables between the Battery Cabinets and the Auxiliary Contacts in the UPS The connection of auxiliary contacts is dependent on the number of battery breakers supported by the UPS. In the examples below two banks of battery breakers are supported. **NOTE:** If the combined short circuit current of the battery cabinets exceeds the short circuit rating of the UPS, a pull box with fuses or an external box with a battery breaker must be installed. Please contact Schneider Electric for more information. #### **System with One Battery Cabinet** #### **System with Two Battery Cabinets** #### System with Four Battery Cabinets in Two Battery Banks # Overview of Signal Cables for Alarms and Battery Breaker Trip In systems with more battery cabinets, only the system BMS of battery cabinet 1 (the battery cabinet closest to the UPS) is connected to the UPS. Remove signal cable 0W13441 between the SMPS I/O port and the DRY CONTACT ports on battery cabinet 2 and battery cabinet 3. - SG IO 1: Used for sending signals for minor and major alarms to the UPS. - SG IO 2: Used for receiving trip signal from the UPS. #### **System with One Battery Cabinet** #### System with Three Battery Cabinets in Two Battery Banks # Overview of CAN Bus Cables between the Battery Cabinets **NOTE:** In systems with more battery cabinets, remove the cables 0W76935 from CAN 1 in the rack BMS to the System BMS CAN I/O in battery cabinet 2 and battery cabinet 3. 1. Route signal cable 0W76928 from CAN 2 port of battery cabinet 1 to the CAN 1 port of battery cabinet 2. Repeat for the remaining battery cabinets. Do not connect the CAN cables, Schneider Electric service will complete the connections during start-up. # **Overview of EPO Signal Cables** Connect the Class 2/SELV signal cables from the building EPO to the rack BMS.
Class 2/SELV circuits must be isolated from the primary circuitry. Do not connect any circuit to the EPO terminal block unless it can be confirmed that the circuit is Class 2/SELV. # **Decommission or Move the UPS to a New Location** **NOTE:** Contact Schneider Electric for removal of the interconnection busbars between the cabinets. - 1. Shut down the UPS completely follow the instructions in the UPS operation manual. - 2. Lockout/Tagout all breakers in the switchgear in the OFF (open) position. - 3. Lockout/Tagout all battery breakers in the switchgear/battery solution in the OFF (open) position. - 4. Open the front door of the UPS. - 5. If present, Lockout/Tagout the backfeed breaker BF2 in the OFF (open) position. - 6. Open the front door of the I/O cabinet and the power cabinets. - 7. Remove the two metal plates from the I/O cabinet. 8. Measure for and verify ABSENCE of voltage on each input/bypass/output/DC busbar before continuing. # **AADANGER** ## HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Measure for and verify ABSENCE of voltage on each input/bypass/output/ DC busbar before proceeding. Failure to follow these instructions will result in death or serious injury. ## Front View of the I/O Cabinet - 9. Disconnect and remove all power cables from the I/O cabinet. See Connect the Power Cables in a 480 V System, page 67 for details. - 10. Disconnect and remove all signal cables from the I/O cabinet. See Signal Cables, page 70 for details. - 11. Contact Schneider Electric for removal of the interconnection busbars between the cabinets. The interconnections busbars must only be removed by a Schneider Electric-certified field service representative or service partner. - 12. Remove the seismic front anchoring brackets from the cabinets. Save for reinstallation. See Mount the Front Anchoring Brackets, page 69 for details. - 13. Remove the top baying brackets and interconnection screws from the cabinets. Release the cabinets from the rear anchoring brackets by loosening the bolts on the front of the cabinets. See Position the Cabinets, page 50 for details. - 14. Reinstall all removed plates and covers in the cabinets. See Final Mechanical Assembly of the I/O Cabinet, page 91 and Final Mechanical Assembly of the Power Cabinets, page 95 for details. - 15. Close and lock the front door of the cabinets. - 16. Raise the feet of the cabinets until the casters have full contact with the floor. - 17. You can now move each cabinet individually by rolling it over the floor on the casters. # **AWARNING** ## **TIPPING HAZARD** - The casters of the cabinet are exclusively for transport on flat, even, hard, and horizontal surfaces. - The casters of the cabinet are intended for transport over short distances (i.e. inside the same building). - Move at a slow pace and pay close attention on the floor conditions and the balance of the cabinet. Failure to follow these instructions can result in death, serious injury, or equipment damage. 18. Remove the rear anchoring brackets from the floor. Save for reinstallation. See Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet (s), page 47 for details. 19. For transport over longer distances or in conditions that are not suitable for the casters of the cabinet: # **AWARNING** #### **TIPPING HAZARD** For transport over longer distances or in conditions that are not suitable for the casters of the UPS, ensure: - that personnel performing the transport have necessary skills and have received adequate training; - to use appropriate tools to safely lift and transport the cabinet; - to protect the product against damage by using appropriate protection (like wrapping or packaging). Failure to follow these instructions can result in death, serious injury, or equipment damage. ## **AWARNING** #### **TOP-HEAVY CABINET** The power cabinet is top-heavy. Take appropriate precautions during handling and preparation for transport/shipment. Failure to follow these instructions can result in death, serious injury, or equipment damage. Transportation requirements: - Mount the cabinet in a vertical position in the center of a suitable pallet. The pallet must be suitable for the weight of the cabinet. The I/O cabinet weighs 876 kg (1931 lbs). The power cabinet weighs 540 kg (1190 lbs). - Use appropriate means of fixation to mount the cabinet to the pallet. ## **ADANGER** #### **TIPPING HAZARD** - The cabinet must be appropriately fixed to the pallet immediately after being placed on the pallet. - The fixation hardware must be strong enough to withstand vibrations and shocks during loading, transport, and unloading. Failure to follow these instructions will result in death or serious injury. # **AWARNING** ## **UNEXPECTED EQUIPMENT BEHAVIOR** Do not lift the cabinet with a forklift/pallet truck directly on the frame as it may bend or damage the frame. Failure to follow these instructions can result in death, serious injury, or equipment damage. - 20. Perform one of the following: - Decommission the cabinets, OR - Move the the I/O cabinet/power cabinet to a new location to install it. 21. **Only for installing the UPS in a new location**: Follow the installation manual to install the I/O cabinet and power cabinets in the new location. See section for installation procedure for installation overview. Startup must only be performed by Schneider Electric. # **AADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Startup must only be performed by Schneider Electric. Failure to follow these instructions will result in death or serious injury. # **Decommission or Move the Battery Cabinet to a New Location** 1. Lockout/Tagout the battery breaker in the OFF (open) position and open the two fuse holders in the battery cabinet. - 2. Lockout/Tagout the power to the SMPS AC/DC converter upstream (if applicable). - 3. Disconnect and remove all power cables from the battery cabinet. See Connect the Power Cables, page 98 for details. - 4. Disconnect and remove all signal cables from the battery cabinet. See Route the Signal Cables to the Switchgear, Rack BMS, and System BMS Ports, page 102 for details. - Disconnect and remove power cables to the SMPS AC/DC converter (if applicable). Refer to the SMPS AC/DC converter installation manual for details. - 6. Contact Schneider Electric for removal of the battery busbars and fuse kits. The battery busbars and fuse kits must only be removed by a Schneider Electric-certified field service representative or service partner. 7. Remove the batteries from the shelves. Recycle or reuse the batteries as appropriate. # **AADANGER** ## HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Servicing of batteries must only be performed or supervised by qualified personnel knowledgeable of batteries and the required precautions. Keep unqualified personnel away from batteries. - Recycle lead-acid batteries correctly. Batteries contain lead and dilute sulfuric acid. - Dispose of the batteries in accordance with country and local regulations. Failure to follow these instructions will result in death or serious injury. - 8. Contact Schneider Electric for removal of the interconnection busbars between the cabinets. The interconnections busbars must only be removed by a Schneider Electric-certified field service representative or service partner. - Remove the seismic front and rear anchoring brackets from the cabinets. Save for reinstallation. See Install the Front Seismic Anchoring, page 63 and Install the Rear Seismic Anchoring for the UPS and the Battery Cabinet(s), page 47 for details. - 10. Close and lock the front door of the cabinets. - 11. Raise the feet of the cabinets until the casters have full contact with the floor. - You can now move each cabinet individually by rolling it over the floor on the casters. # **AWARNING** ## **TIPPING HAZARD** - The casters of the cabinet are exclusively for transport on flat, even, hard, and horizontal surfaces. - The casters of the cabinet are intended for transport over short distances (i.e. inside the same building). - Move at a slow pace and pay close attention on the floor conditions and the balance of the cabinet. Failure to follow these instructions can result in death, serious injury, or equipment damage. # 13. For transport over longer distances or in conditions that are not suitable for the casters of the cabinet: ## **AWARNING** #### **TIPPING HAZARD** For transport over longer distances or in conditions that are not suitable for the casters of the battery cabinet, ensure: - that personnel performing the transport have necessary skills and have received adequate training; - to use appropriate tools to safely lift and transport the cabinet; - to protect the product against damage by using appropriate protection (like wrapping or packaging). Failure to follow these instructions can result in death, serious injury, or equipment damage. ## **AWARNING** #### **TOP-HEAVY CABINET** The battery cabinet is top-heavy. Take appropriate precautions during handling and preparation for transport/shipment. Failure to follow these instructions can result in death, serious injury, or equipment damage. Transportation requirements: - Mount the cabinet in a vertical position in the center of a suitable pallet. The pallet must be suitable for the weight of the cabinet. - Use appropriate means of fixation to mount the cabinet to the pallet. # **ADANGER** #### **TIPPING HAZARD** - The cabinet must be appropriately fixed to the pallet immediately after being placed on the pallet. - The fixation hardware must be strong enough to withstand vibrations and shocks during loading, transport, and unloading. Failure to follow these instructions will result in death or serious injury. # **AWARNING** ## **UNEXPECTED EQUIPMENT BEHAVIOR** Do not lift the cabinet with a forklift/pallet truck directly on the frame as it may bend or damage the frame. Failure to follow these instructions can result in death, serious injury, or equipment damage. - 14.
Perform one of the following: - Decommission the battery cabinet, OR - Move the battery cabinet to a new location to install it. 15. Only for installing the battery cabinet in a new location: Follow the installation manual to install the battery cabinet in the new location. See section of installation procedure for installation overview. Startup must only be performed by Schneider Electric. # **AADANGER** HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH Startup must only be performed by Schneider Electric. Failure to follow these instructions will result in death or serious injury. Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France + 33 (0) 1 41 29 70 00 www.se.com As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication. © 2024 – 2025 Schneider Electric. All rights reserved. 990-914302A-001