PowerLogic[™] PM5300-Reihe

Benutzerhandbuch

EAV15107-DE11 10/2023

Rechtliche Hinweise

Die in diesem Dokument enthaltenen Informationen umfassen allgemeine Beschreibungen, technische Merkmale und Kenndaten und/oder Empfehlungen in Bezug auf Produkte/Lösungen.

Dieses Dokument ersetzt keinesfalls eine detaillierte Analyse bzw. einen betriebsund standortspezifischen Entwicklungs- oder Schemaplan. Es darf nicht zur Ermittlung der Eignung oder Zuverlässigkeit von Produkten/Lösungen für spezifische Benutzeranwendungen verwendet werden. Es liegt im Verantwortungsbereich eines jeden Benutzers, selbst eine angemessene und umfassende Risikoanalyse, Risikobewertung und Testreihe für die Produkte/Lösungen in Übereinstimmung mit der jeweils spezifischen Anwendung bzw. Nutzung durchzuführen bzw. von entsprechendem Fachpersonal (Integrator, Spezifikateur oder ähnliche Fachkraft) durchführen zu lassen.

Die Marke Schneider Electric sowie alle anderen in diesem Dokument enthaltenen Markenzeichen von Schneider Electric SE und seinen Tochtergesellschaften sind das Eigentum von Schneider Electric SE oder seinen Tochtergesellschaften. Alle anderen Marken können Markenzeichen ihrer jeweiligen Eigentümer sein.

Dieses Dokument und seine Inhalte sind durch geltende Urheberrechtsgesetze geschützt und werden ausschließlich zu Informationszwecken bereitgestellt. Ohne die vorherige schriftliche Genehmigung von Schneider Electric darf kein Teil dieses Dokuments in irgendeiner Form oder auf irgendeine Weise (elektronisch, mechanisch, durch Fotokopieren, Aufzeichnen oder anderweitig) zu irgendeinem Zweck vervielfältigt oder übertragen werden.

Schneider Electric gewährt keine Rechte oder Lizenzen für die kommerzielle Nutzung des Dokuments oder dessen Inhalts, mit Ausnahme einer nicht-exklusiven und persönlichen Lizenz, es "wie besehen" zu konsultieren.

Schneider Electric behält sich das Recht vor, jederzeit ohne entsprechende schriftliche Vorankündigung Änderungen oder Aktualisierungen mit Bezug auf den Inhalt bzw. am Inhalt dieses Dokuments oder dessen Format vorzunehmen.

Soweit nach geltendem Recht zulässig, übernehmen Schneider Electric und seine Tochtergesellschaften keine Verantwortung oder Haftung für Fehler oder Auslassungen im Informationsgehalt dieses Dokuments oder für Folgen, die aus oder infolge der sachgemäßen oder missbräuchlichen Verwendung der hierin enthaltenen Informationen entstehen.

Sicherheitsinformationen

Wichtige Informationen

Lesen Sie sich diese Anweisungen sorgfältig durch und machen Sie sich vor Installation, Betrieb, Bedienung und Wartung mit dem Gerät vertraut. Die nachstehend aufgeführten Hinweise sind in diesem Handbuch sowie auf dem Gerät selbst zu finden und weisen auf potenzielle Risiken und Gefahren oder bestimmte Informationen hin, die eine Vorgehensweise verdeutlichen oder vereinfachen.

Der Zusatz eines Symbols zu den Sicherheitshinweisen "Gefahr" oder "Warnung" deutet auf eine elektrische Gefahr hin, die zu schweren Verletzungen führen kann, wenn die Anweisungen nicht befolgt werden.

Das ist ein allgemeines Warnsymbol. Es macht Sie auf mögliche Verletzungsgefahren aufmerksam. Befolgen Sie alle Sicherheitsmeldungen, die neben diesem Symbol aufgeführt werden, um der potenziellen Verletzungs- bzw. Lebensgefahr vorzubeugen.

A A GEFAHR

GEFAHR macht auf eine gefährliche Situation aufmerksam, die bei Nichtbeachtung zu schweren bzw. tödlichen Verletzungen **führt**.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

WARNUNG macht auf eine gefährliche Situation aufmerksam, die bei Nichtbeachtung zu schweren bzw. tödlichen Verletzungen **führen kann**.

AVORSICHT

VORSICHT macht auf eine gefährliche Situation aufmerksam, die bei Nichtbeachtung zu leichten Verletzungen **führen kann**.

HINWEIS

HINWEIS gibt Auskunft über Vorgehensweisen, bei denen keine Verletzungen drohen.

Bitte beachten

Elektrische Geräte dürfen nur von qualifiziertem Personal an Orten mit eingeschränktem Zugang installiert, betrieben, gewartet und instand gehalten werden. Schneider Electric übernimmt keine Verantwortung für jegliche Konsequenzen, die sich aus der Verwendung dieses Geräts ergeben. Als qualifiziertes Fachpersonal gelten Mitarbeiter, die über die entsprechenden Fähigkeiten und Kenntnisse zu Montage, Konstruktion und Betrieb von elektrischen Geräten verfügen und eine Schulung zur Erkennung und Vermeidung möglicher Gefahren absolviert haben.

Symbole für Messgeräten

Die folgenden Symbole gemäß IEC 60417 und ISO 7000 können auf den Messgeräten verwendet werden:

Symbol	Referenz	Beschreibung	
	IEC 60417-5172	Geräte der Schutzklasse II Zur Identifizierung von Geräten, die die Sicherheitsanforderungen für Geräte der Klasse II erfüllen (doppelte oder verstärkte Isolierung).	
\triangle	ISO 7000-0434B	Vorsicht Zeigt an, dass Vorsicht geboten ist, wenn das Gerät oder die Steuerung in der Nähe des Ortes, an dem sich das Symbol befindet, betrieben wird. Zeigt an, dass die aktuelle Situation ein bestimmtes Wissen oder ein Eingreifen des Bedieners erfordert, damit unerwünschte Folgen vermieden werden können.	
i	ISO 7000-1641	Bedienungsanleitung; Betriebsanweisungen Zur Angabe des Ortes, an dem die Bedienungsanleitung gespeichert ist, oder zur Identifizierung von Informationen, die sich auf die Bedienungsanleitung beziehen. Zeigt an, dass bei der Bedienung des Geräts oder bei der Bedienung von Steuerungen in der Nähe des Ortes, an dem sich das Symbol befindet, Betriebsanweisungen zu beachten sind.	

Hinweise

FCC

Dieses Gerät wurde getestet und entspricht den Grenzwerten für digitale Geräte der Klasse B gemäß Teil 15 der FCC-Vorschriften. Diese Grenzwerte bieten einen angemessenen Schutz vor schädlichen Störstrahlungen bei Installation in einem Wohngebiet. Dieses Gerät erzeugt und verwendet Funkfrequenzenergie und kann solche auch abstrahlen. Wird es nicht der Anleitung entsprechend installiert und benutzt, kann es schädliche Störungen der Funkkommunikation verursachen. Es kann jedoch nicht garantiert werden, dass solche Störungen nicht in einer bestimmten Installation auftreten. Wenn dieses Gerät schädliche Störungen beim Radio- oder Fernsehempfang verursacht (was durch Aus- und Wiedereinschalten des Geräts festgestellt werden kann), ist der Anwender aufgefordert, die Störungen durch eine oder mehrere der folgenden Maßnahmen zu beheben:

- · Neuausrichtung oder Aufbau der Empfängerantenne an einem anderen Ort
- · Erhöhung des Abstands zwischen Gerät und Empfänger
- Schließen Sie das Gerät an die Steckdose eines Stromkreises an, an dem der Empfänger nicht angeschlossen ist.
- Bitten Sie Ihren Händler oder einen erfahrenen Rundfunk-/Fernsehtechniker um Hilfe.

Der Benutzer wird darauf hingewiesen, dass durch Änderungen oder Modifikationen, die nicht ausdrücklich von Schneider Electric genehmigt wurden, die Berechtigung des Benutzers zum Betrieb des Geräts erlischt.

Dieses digitale Gerät entspricht CAN ICES-3 (B) /NMB-3(B).

Über dieses Handbuch

Dieses Handbuch enthält Funktionsbeschreibungen sowie Installations- und Konfigurationsanweisungen für die Power Meter der Reihe PowerLogic[™] PM5300.

Im gesamten Handbuch bezieht sich der Begriff "Messgerät" auf alle PM5300-Modelle. Alle Unterschiede zwischen den Modellen, z. B. eine Funktion, die nur ein Modell aufweist, werden mit der entsprechenden Modellnummer oder Beschreibung angegeben.

In diesem Handbuch wird vorausgesetzt, dass Sie sich mit Leistungsmessgeräten auskennen und mit Anlage und Stromnetz, in der bzw. in dem Ihr Messgerät installiert ist, vertraut sind.

Im Handbuch sind keine Konfigurationsdaten für erweiterte Funktionen enthalten, für die ein erfahrener Anwender eine erweiterte Konfiguration ausführen würde. Es sind auch keine Anweisungen vorhanden, wie mit Hilfe von anderen Energiemanagementsystemen oder -softwares als dem ION Setup Messgerätedaten integriert oder Messgerätekonfigurationen durchgeführt werden. ION Setup ist ein kostenloses Konfigurationswerkzeug, das unter www.se.com heruntergeladen werden kann.

Die jeweils neuesten Unterlagen für Ihre Messgerät können Sie unter www.se.com herunterladen.

Zugehörige Dokumente

Dokument	Nummer
Kurzanleitung für die Reihe PM5300	HRB69887

Inhaltsverzeichnis

Sicherheitsvorkehrungen	11
Messgerät – Übersicht	13
Funktionen und Optionen	13
Werkzeuge zur Datenanzeige und -analyse	15
Messgerätekonfiguration	16
Hardwarebeschreibung	
Ergänzende Informationen	
Messgerätbeschreibung	
Klemmenabdeckungen	
Messgerät-Schalttafelmontage und Verdrahtungsempfehlungen	
Betrachtungen zur Messgerätverdrahtung	
Steuerspannung (Hilfsspannung)	22
Kommunikationsanschlüsse	22
Display	24
Display-Überblick	24
Standard-Anzeigebildschirm.	
Benachrichtigungssymbole	
Messgeräteanzeigesprache	
Navigation der Messgerätbildschirme.	
Datenanzeigebildschirme	
- HMI-Einrichtungsbildschirme	
Display einrichten	
Grundeinstellung	34
Konfiguration von Basis-Einrichtungsparametern über das Display	
Konfiguration fortgeschrittener Einrichtungsparameter über das	
Display	
Regionaleinstellungen einrichten	
Bildschirmkennwörter einrichten	
Verlorener Benutzerzugriff	
Einstellen der Uhr über das Display	
Cybersicherheit	40
Cybersicherheit-Ülbersicht	40 40
Defense-in-Denth-Produktsicherheit	40
Sicherheitsfunktionen des Geräts	40 41
Annahmen zur deschützten Umgehung	۲ ب
Potenzielle Risiken und ausgleichende Kontrollen	
Standard-Sicherheitseinstellungen	_+ 42
Display-Kennwörter	42
Gerät härten	43
Kommunikationsprotokolle aktivieren/deaktivieren	43
	43
Firmware-Aktualisierungen	
Firmware-Aktualisierungen Richtlinien für sichere Entsorgung	44
Richtlinien für sichere Entsorgung	44 44
Firmware-Aktualisierungen Richtlinien für sichere Entsorgung Checkliste für sichere Entsorgung Entsorgung Wiederverwendung Recycling	44 44 44
Richtlinien für sichere Entsorgung Checkliste für sichere Entsorgung Entsorgung, Wiederverwendung, Recycling	44 44 44
Richtlinien für sichere Entsorgung Checkliste für sichere Entsorgung Entsorgung, Wiederverwendung, Recycling Kommunikationsschnittstelle	44 44 44 46
Firmware-Aktualisierungen	44 44 44 46 46

Ethernet-Kommunikationsschnittstelle	
BACnet/IP	
Unterstützte BACnet-Funktionen	
Implementierung der BACnet/IP-Kommunikation	51
BACnet objects	
Protokollierung	61
Datenprotokoll	61
Alarmprotokoll	62
Speicherzuordnung für Protokolldateien	62
Ein-/Ausgänge	63
Verfügbare E/A-Schnittstellen	63
Anwendungen für Statuseingänge	64
Digitalausgangsanwendungen	66
Anwendungen für Relaisausgänge	70
Energieimpulse	73
Alarme	75
Alarmübersicht	75
Verfügbare Alarme	75
Interne Alarme	
Verfügbare interne Alarme	75
Digitale Alarme	76
Standardalarme	
Alarmprioritäten	
Übersicht über die Alarmeinrichtung	
Alarmanzeige-LED	
Alarmanzeige und -benachrichtigung	
Liste der aktiven Alarme und Alarmverlaufsprotokoll	
Betrachtung aktiver Alarmdaten mithilfe des Displays	
Betrachtung von Alarmverlaufsdaten mithilfe des Displays	
Betrachtung von Alarmzählern über das Display	
Quittieren von Alarmen mit hoher Priorität über das Display	
Rückstellung der Alarme mithilfe vonION Setup	
Messungen	89
Echtzeitmessungen	89
Energie	
Konfiguration der Energieskalierung über ION Setup	89
Voreingestellte Energiewerte	90
Konfiguration der voreingestellten Energiewerte über ION Setup	90
Min/Max-Werte	
Mittelwert	
Leistungsfaktor (LF)	
Timer	
Rücksetzungen	
Mehrtarife	105
Mehrfachtarif	105
Übersicht über den Befehlsmodus	106
Übersicht über den Tageszeitmodus	106
Übersicht über den Fingangsmodus	100
	440

Übersicht über Oberwellen	112
Klirrfaktor-Prozentwert	112
Gesamte Mittelwertverzerrung	112
Berechnung des Oberwellenanteils	113
THD-%-Berechnungen	113
thd-Berechnungen	113
TDD-Berechnungen	113
Betrachtung von Oberwellendaten über das Display	114
Betrachtung von TDD-Daten über das Display	114
Betrachtung von THD- bzw. thd über das Display	115
Wartung	116
Wartungsübersicht	116
Speicher des Power Meters	116
Firmwareversion, Modellbezeichnung und Seriennummer	116
Diagnoseinformationen	118
Steuerspannungsunterbrechungsereignis (Hilfsspannung)	119
Steuerspannungsunterbrechungsereignis (Hilfsspannung) über das	
Display quittieren	119
Fehlerbehebung	120
Technische Unterstützung	122
Genauigkeitsüberprüfung	123
Überblick über die Messgerät-Genauigkeit	123
Anforderungen an die Genauigkeitsprüfung	123
Energieimpulse	124
Messgeräteinstellungen für die Genauigkeitsprüfung	124
Test für die Genauigkeitsprüfung	125
Testpunkte für die Genauigkeitsüberprüfung	127
Überlegungen zu Energieimpulsen	128
Überlegungen zu Spannungs- und Stromwandlern	128
Gesamtleistungsgrenzwerte	128
Typische Testfehlerquellen	129
MID/MIR-Konformität	130
Geschützte Einrichtungsparameter und Funktionen	130
Messgerät sperren und freigeben	130
Sperrkennwort einrichten	131
Gerätespezifikationen	133
Chinesische Normenkonformität	138

Sicherheitsvorkehrungen

Arbeiten zur Installation, Verdrahtung, Prüfung und Instandhaltung müssen in Übereinstimmung mit allen lokalen und nationalen elektrischen Standards durchgeführt werden.

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENÜBERSCHLAGS

- Tragen Sie geeignete persönliche Schutzausrüstung (PSA) und befolgen Sie sichere Arbeitsweisen für die Ausführung von Elektroarbeiten. Beachten Sie die Normen NFPA 70E, CSA Z462 sowie sonstige örtliche Standards.
- Schalten Sie vor Arbeiten an oder in der Anlage, in der das Gerät installiert ist, die gesamte Stromversorgung des Geräts bzw. der Anlage ab.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich ausgeschaltet ist.
- Halten Sie die Richtlinien im Abschnitt "Verdrahtung" der zugehörigen Installationsanleitung ein.
- Gehen Sie davon aus, dass Kommunikations- und E/A-Leitungen gefährliche Spannungen führen, solange nichts anderes festgestellt wurde.
- Überschreiten Sie die maximalen Grenzwerte dieses Geräts nicht.
- Schließen Sie keinesfalls die Sekundärklemmen eines Spannungswandlers (SPW) kurz.
- Öffnen Sie keinesfalls die Sekundärklemmen eines Stromwandlers (SW).
- Erden Sie den Sekundärkreis von Stromwandlern.
- Die Daten des Messgeräts dürfen nicht für die Überprüfung des stromlosen Zustands verwendet werden
- Bringen Sie alle Vorrichtungen, Türen und Abdeckungen wieder an, bevor Sie das Gerät einschalten.
- Stromwandler oder LPCTs dürfen nicht in Anlagen installiert werden, in denen sie mehr als 75 % des Verdrahtungsraums einer der Anlagen-Querschnittsflächen einnehmen.
- Installieren Sie Stromwandler oder LPCTs nicht in Bereichen, in denen Belüftungsöffnungen blockiert sein könnten, oder in Bereichen, in denen Lichtbogenüberschläge auftreten.
- Sichern Sie die Stromwandler- oder LPCT.Sekundärleitungen so, dass sie nicht mit stromführenden Schaltungen in Berührung kommen.
- Verwenden Sie kein Wasser oder andere Flüssigmaterialien, um das Produkt zu reinigen. Benutzen Sie zur Schmutzentfernung ein Reinigungstuch. Falls der Schmutz sich nicht entfernen lässt, wenden Sie sich an den technischen Support vor Ort.
- Der Installateur ist dafür verantwortlich, dass die Nennwerte und Betriebsmerkmale der Überstromschutzgeräte für die Spannungsversorgung passend zum maximalen Nennstromwert ausgewählt werden.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

HINWEIS: Siehe IEC 60950-1 für weitere Informationen zu Kommunikationsschnittstellen und E/A-Verdrahtung zu Mehrfachgeräten.

AWARNUNG

NICHT VORGESEHENER GERÄTEBETRIEB

- Verwenden Sie dieses Gerät nicht für kritische Steuerungs- oder Schutzfunktionen für Menschen, Tiere oder Sachanlagen.
- Verwenden Sie dieses Gerät nicht, wenn ein Schraubenschlüsselsymbol

wenn der Wert unter **Meter Status** nicht "OK" ist.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

AWARNUNG

POTENZIELLE GEFÄHRDUNG DER SYSTEMVERFÜGBARKEIT, -INTEGRITÄT UND -VERTRAULICHKEIT

- Ändern Sie Standard-Kennwörter/-Kenncodes, um nicht-autorisierte Zugriffe auf Geräteeinstellungen und -informationen zu vermeiden.
- Deaktivieren Sie nach Möglichkeit nicht genutzte Ports bzw. Dienste und Standardkonten, damit Pfade für böswillige Angriffe minimiert werden.
- Schützen Sie vernetzte Geräte mit mehreren Cyberabwehrschichten (z. B. Firewalls, Netzwerksegmentierung sowie Netzwerk-Angriffserkennung und -Schutz).
- Nutzen Sie vorbildliche Verfahren f
 ür die Cybersicherheit (z. B. Konzept der geringsten Rechte, Aufgabentrennung), um unbefugte Offenlegung, Verlust, Ver
 änderung von Daten und Protokollen bzw. die Unterbrechung von Diensten oder einen unbeabsichtigten Betrieb zu verhindern.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Messgerät – Übersicht

Funktionen und Optionen

Kostenmana	gement-Anwer	laungen.			
	PM5310	PM5320	PM5330	PM5340 PM5341	
Schnelle Installation, Schalttafelmontage mit integriertem Display	1	1	✓ ✓	✓ ✓	
Genauigkeit IEC 61557-12: 2021, BS/ EN 61557-12	Kl. 0.5S	KI. 0.5S	KI. 0.5S	KI. 0.5S	
Anzeige LCD mit Hintergrundbeleuchtung, mehrsprachig,	✓	✓	1	1	
Leistungs- und Energiemessung: 3-Phasen- Spannung, Strom, Leistung, Mittelwert, Energie, Frequenz, Leistungsfaktor	1	✓ ✓	✓	✓	
Mehrfachtarif	4	4	4	4	
Energiequalitätsanalyse: THD, thd, TDD	1	1	J	1	
Energiequalitätsanalyse: Oberwellen, einzeln (ungerade) bis zur	31.	31.	31.	31.	
E/A	2 SE/2 DA	2 SE/2 DA	2 SE/2 DA	2 SE/2 DA	
Relais	—	—	2	2	
Alarme	35	35	35	35	
Sollwert-Ansprechzeit, Sekunden	1	1	1	1	
Alarme für Einzel- und Mehrfachbedingungen	1	1	1	1	
Kommunikationsschnittstelle: Serielle Schnittstellen mit Modbus-Protokoll	1	—	1	_	
Kommunikationsschnittstelle: Ethernet-Schnittstelle mit Modbus TCP und BACnet/IP	-	1	—	1	
Konformität für MID/MIR-fähig	_	_	PM5331	PM5341	

Die Leistungs- und Energiemessgeräte der Reihe PowerLogic™ PM5300 erfüllen problemlos die hohen Anforderungen von Energieüberwachungs- und

Funktionen und Kenndaten

Allgemein

Einsatz in NS- und MS-Netzen	1
Grundlegende Messungen mit THD- und Min/ Max-Werten	✓

Momentan-Effektivwerte (RMS)

Strom (pro Phase und Neutralleiter)	✓
Spannung (gesamt, pro Phase L-L und L-N)	✓
Frequenz	✓
Wirk-, Blind- und Scheinleistung (Gesamtwert und Wert pro Phase)	Mit Vorzeichen, vier Quadranten
Realer Leistungsfaktor (Gesamtwert und Wert pro Phase)	Mit Vorzeichen, vier Quadranten

Momentan-Effektivwerte (RMS) (Fortsetzung)

Cosinus Phi (Gesamtwert und Wert pro Phase)	Mit Vorzeichen, vier Quadranten
% unsymmetrisch I, V L-N, V L-L	<i>✓</i>

Energiewerte

		Kumulierte Wirk-, Blind- und Scheinenergie ¹	Bezogen/Geliefert; netto und absolut
--	--	---	--------------------------------------

¹Gespeichert im nichtflüchtigen Speicher

Mittelwerte

Durchschnittsstrom ¹	Aktiver, letzter, prognostizierter sowie Spitzenwert und Spitzenzeiten (Datum/Uhrzeit)
Wirkleistung ¹	Aktiver, letzter, prognostizierter sowie Spitzenwert und Spitzenzeiten (Datum/Uhrzeit)
Blindleistung ¹	Aktiver, letzter, prognostizierter sowie Spitzenwert und Spitzenzeiten (Datum/Uhrzeit)
Scheinleistung ¹	Aktiver, letzter, prognostizierter sowie Spitzenwert und Spitzenzeiten (Datum/Uhrzeit)
Mittelwertberechnung (Gleitblock-, Festblock- oder Rollblockmethode sowie thermische Methode)	✓
Synchronisierung des Messfensters mit Eingang, Kommunikationsbefehl oder interner Uhr	•
Konfigurierbare Mittelwertintervalle	1

¹Gespeichert im nichtflüchtigen Speicher

Leistungsqualitätsmessungen

THD, thd (Klirrfaktor) I, V L-N, V L-L pro Phase	I, V L-N, V L-L
TDD (gesamte Mittelwertverzerrung)	1
Einzelne Oberwellen (ungerade)	31.

Sonstige Messwerte

E/A-Timer ¹	1
Betriebszeit-Timer ¹	1
Last-Timer ¹	1
Alarmzähler und Alarmprotokolle	✓ ✓

¹Gespeichert im nichtflüchtigen Speicher

Datenaufzeichnung

Minimum/Maximum von Momentanwerten plus Phasenidentifizierung ¹	1
Alarme mit Zeitstempel im 1-Sekunden-Takt ¹	Datenaufzeichnung – bis zu zwei feste Parameter (z. B. kWh und kVAh) mit konfigurierbarem Intervall und konfigurierbarer Dauer (z. B. 2 Parameter für 60 Tage im 15- Minuten-Intervall)
Speicherkapazität	256 kB
Min/Max-Protokoll	1
Wartungs-, Alarm- und Ereignisprotokolle	1

¹Gespeichert im nichtflüchtigen Speicher

EAV15107-DE11

Eingänge/Ausgänge/Relais

Digitaleingänge	2
Digitalausgänge	2
Typ-A-Relaisausgänge	2
Zeitstempelauflösung in Sekunden	1
Frittspannung	×

Werkzeuge zur Datenanzeige und -analyse

Power Monitoring Expert

EcoStruxure[™] Power Monitoring Expert ist ein vollständiges Softwarepaket für die Überwachung von Energiemanagementanwendungen.

Die Software erfasst und organisiert Daten aus dem Stromversorgungsnetz Ihrer Einrichtung und präsentiert sie über eine intuitive Webschnittstelle als aussagekräftige, ausführbare Daten.

Power Monitoring Expert kommuniziert mit Geräten im Netzwerk für Folgendes:

- Echtzeit-Überwachung über ein Webportal für mehrere Benutzer
- Trenddiagramme und -kumulation
- Energiequalitätsanalyse und Konformitätsüberwachung
- Vorkonfigurierte und benutzerdefinierte Berichte

Anweisungen für das Hinzufügen Ihres Geräts zum Datenerfassungs- und -analysesystem finden Sie in der EcoStruxure[™] Power Monitoring Expert-Onlinehilfe.

Power SCADA Operation

EcoStruxure[™] Power SCADA Operation ist eine vollständige Lösung für die Echtzeitüberwachung und -steuerung des Betriebs von großen Einrichtungen und kritischen Infrastrukturanlagen.

Sie kommuniziert mit Ihrem Gerät für die Datenerfassung und die Echtzeitsteuerung. Power SCADA Operation kann für folgende Aufgaben verwendet werden:

- Systemüberwachung
- · Echtzeit- und protokollierte Trendverfolgung und Ereignisprotokollierung
- PC-basierte benutzerdefinierte Alarme

Anweisungen für das Hinzufügen Ihres Geräts zum Datenerfassungs- und -analysesystem finden Sie in der EcoStruxure™ Power SCADA Operation-Onlinehilfe.

Modbus-Befehlsschnittstelle

Die meisten der Echtzeit- und Protokolldaten des Messgeräts sowie die grundlegende Konfiguration und Einrichtung der Messgerätfunktionen können wie in der Modbus-Registerliste des Messgeräts veröffentlicht über eine Modbus-Befehlsschnittstelle aufgerufen bzw. programmiert werden.

Dies ist ein erweitertes Verfahren, das nur von Benutzern mit vertieften Kenntnissen von Modbus, vom Messgerät und von dem zu überwachenden Energiesystem durchgeführt werden sollte. Für weitere Informationen zur Modbus-Befehlsschnittstelle wenden Sie sich an den technischen Support.

Modbus-Zuordnungsinformationen und grundlegende Anweisungen zur Befehlsschnittstelle finden Sie in der Modbus-Registerliste Ihres Messgeräts unter www.se.com.

Messgerätekonfiguration

Die Messgerätkonfiguration kann über das Display oder extern über PowerLogic[™] ION Setup durchgeführt werden.

ION Setup ist ein Tool für die Messgerätekonfiguration, das kostenlos unter www.se.com heruntergeladen werden kann.

Lesen Sie die ION Setup-Onlinehilfe oder im ION Setup-Gerätekonfigurationsleitfaden. Um eine Kopie herunterzuladen, rufen Sie www.se.com auf und suchen Sie nach dem ION Setup-Gerätekonfigurationsleitfaden.

Hardwarebeschreibung

Ergänzende Informationen

Dieses Dokument sollte zusammen mit der Kurzanleitung verwendet werden, die im Lieferumfang Ihres Geräts und Zubehörs enthalten ist.

Informationen zur Installation entnehmen Sie bitte der Kurzanleitung.

Angaben zu Ihrem Gerät sowie zu dessen Optionen und Zubehör finden Sie in den Katalogseiten für Ihr Produkt unter www.se.com.

Sie können aktualisierte Unterlagen unter www.se.com herunterladen oder sich für die neuesten Informationen zu Ihrem Produkt an den für Sie zuständigen Schneider Electric-Vertriebsmitarbeiter wenden.

Messgerätbeschreibung

٨	Poloisausgängo (Polov1 Polov2)
A	Relaisausgange (Relay I, Relayz)
	(Nur für PM5330 / PM5331 / PM5340 / PM5341)
В	Spannungseingänge (V1, V2, V3, VN)
С	Steuerspannung (Hilfsspannung) (L1, L2)
D	Stromeingänge (I ₁₊ , I ₁₋ , I ₂₊ , I ₂₋ , I ₃₊ , I ₃₋)
Е	Statuseingänge/Digitalausgänge (D1+, D2+, S1+, S2+, -/C, +)
F	Kommunikationsschnittstelle:
	RS-485 (+, -, 🕀, C) (nur für PM5310 / PM5330 / PM5331)
	Ethernet (nur für PM5320 / PM5340 / PM5341)
G	Dichtung
Н	Alarm-/Energieimpuls-LED
I	Status-/serielle Kommunikations-LED
J	Navigations-/Menüauswahltasten

Alarm-/Energieimpuls-LED

Die Alarm-/Energieimpuls-LED kann für Alarmbenachrichtigungen oder Energieimpulse konfiguriert werden.

Wenn diese LED für Alarmbenachrichtigungen konfiguriert ist, blinkt sie, sobald ein Alarm mit hoher, mittlerer oder niedriger Priorität aktiv ist. Die LED liefert einen visuellen Hinweis auf einen aktiven Alarmzustand oder auf einen inaktiven, aber nicht quittierten Alarm hoher Priorität.

Ist die LED für Energieimpulse konfiguriert, blinkt sie mit einer zur verbrauchten Energie proportionalen Frequenz. Normalerweise wird dies für die Überprüfung der Genauigkeit des Power Meters verwendet.

Status-/serielle Kommunikations-LED

Die Status-/serielle Kommunikations-LED blinkt, um den Betriebsstatus des Messgeräts und den seriellen Modbus-Kommunikationsstatus anzuzeigen.

Die LED blinkt mit einer langsamen und gleichmäßigen Frequenz, um anzuzeigen, dass das Messgerät betriebsbereit ist. Die LED blinkt mit einer variablen, schnelleren Frequenz, wenn das Messgerät über eine serielle Modbus-Kommunikationsschnittstelle kommuniziert.

Sie können diese LED nicht für andere Zwecke konfigurieren.

HINWEIS: Eine Status-LED, die Dauerlicht zeigt und nicht blinkt, kann auf ein technisches Problem hinweisen. Schalten Sie in diesem Fall das Messgerät aus und wieder ein. Wenn die LED immer noch nicht blinkt, wenden Sie sich an den technischen Support.

Ethernet-Kommunikationsschnittstellen-LEDs

Das Messgerät verfügt über zwei LEDs für die Ethernet-Kommunikationsschnittstelle.

Die Link-LED ist eingeschaltet, wenn es eine gültige Ethernet-Verbindung gibt. Die Act-LED (aktiv) blinkt, um anzuzeigen, dass das Messgerät über die Ethernet-Schnittstelle kommuniziert.

Diese LEDs können nicht für andere Zwecke konfiguriert werden.

Klemmenabdeckungen

Mit den Klemmenabdeckungen für Spannung, Strom sowie Steuer- und Hilfsspannung werden Manipulationen an den Spannungs-, Strom- sowie Steuerund Hilfsspannungsmesseingängen des Messgeräts verhindert und erkannt.

Die Klemmenabdeckungen umschließen die Klemmen, die Befestigungsschrauben der Leiter sowie einen Abschnitt der externen Leiter und deren Isolation. Die Klemmenabdeckungen müssen mit manipulationssicheren Messgerätplomben gesichert werden.

Diese Abdeckungen sind bei Messgerätmodellen enthalten, bei denen plombierbare Spannungs-, Strom- sowie Steuer- und Hilfsspannungsabdeckungen für die Konformität mit Verrechnungs- oder aufsichtsrechtlichen Standards erforderlich sind.

Die Klemmenabdeckungen des Messgeräts müssen von einem qualifizierten Installateur angebracht werden.

Anleitungen zur Montage der Klemmenabdeckungen können Sie der Installationsanleitung oder der mit den Klemmenabdeckungen mitgelieferten Anleitung entnehmen.

Messgerät-Schalttafelmontage und Verdrahtungsempfehlungen

Für Messgeräte mit Schalttafelmontage gelten zusätzliche Montage- und Verdrahtungsempfehlungen:

- Das Messgerät ist f
 ür die Montage in einen ¼-DIN-Tafelausschnitt vorgesehen.
- Kontrollieren Sie die Dichtung (am Umfang des Displays angebracht) und achten Sie darauf, dass sie richtig befestigt und unbeschädigt ist.
- Für die Installation der Messgerät-Befestigungsclips, die sich auf beiden Seiten des Messgerätsockels befinden und zur Befestigung des Messgeräts an der Schalttafel dienen, sind normalerweise keine Werkzeuge erforderlich.

Betrachtungen zur Messgerätverdrahtung

Spannungsgrenzwerte für den Direktanschluss

Sie können die Spannungseingänge des Messgeräts direkt an die Phasenleiter des Stromnetzes anschließen, wenn die Phase-Phase- oder Phase-Neutral-Spannungen des Stromversorgungsnetzes die Maximalspannungsgrenzwerte des Messgeräts für den Direktanschluss nicht überschreiten.

Die Spannungsmesseingänge des Messgeräts sind vom Hersteller für maximal 400 V L–N bzw. 690 V L–L ausgelegt. Allerdings kann die maximal für einen Direktanschluss zulässige Spannung entsprechend den geltenden elektrischen Standards und Vorschriften niedriger sein. In den USA und in Kanada beträgt die maximal zulässige Spannung an den Spannungsmesseingängen des Messgeräts 347 V L–N bzw. 600 V L–L.

Wenn die Spannung Ihres Stromversorgungsnetzes höher als die vorgegebene maximal zulässige Spannung für den Direktanschluss ist, müssen Sie Spannungswandler verwenden, um die Spannungen herunterzutransformieren.

Beschreibung des Systemtyps	Messgeräteinstel- lung	Symbol	Maximalspannung bei Direktanschluss (UL)	Maximalspannung bei Direktanschluss (IEC)	Anzahl Spannungs- wandler (bei Bedarf)
Einphasig, 2-Leiter- System, Phase/ Neutral	1PH2L LN		347 V L-N	400 V L-N	1 SPW
Einphasig, 2-Leiter- System, Phase/ Phase	1PH2L LL		600 V L-L	690 V L-L	1 SPW
Einphasig, 3-Leiter- System, Phase/ Phase mit Neutralleiter	1PH3L LL mit N		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	2 SPW

Beschreibung des Systemtyps	Messgeräteinstel- lung	Symbol	Maximalspannung bei Direktanschluss (UL)	Maximalspannung bei Direktanschluss (IEC)	Anzahl Spannungs- wandler (bei Bedarf)
Dreiphasig, 3-Leiter- System, Dreiecksschaltung, nicht geerdet	3PH3L Drei., n. geerd.	Fund	600 V L-L	600 V L-L	2 SPW
Dreiphasig, 3-Leiter- System, Dreiecksschaltung, starr geerdet	3PH3L Drei., st. geerd.	- Cum	600 V L-L	600 V L-L	2 SPW
Dreiphasig, 3-Leiter- System, Sternschaltung, nicht geerdet	3PH3L Stern, n. geerd.		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	2 SPW
Dreiphasig, 3-Leiter- System, Sternschaltung, geerdet	3PH3L Stern, geerdet		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	2 SPW
Dreiphasig, 3-Leiter- System, Sternschaltung, widerstandsgeerdet	3PH3L Stern, R geerdet		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	2 SPW
Dreiphasig, 4-Leiter- System, offene Dreiecksschaltung, mit Mittelabgriff	3PH4L off. Drei., M. abgr	~ Luur N	347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	3 SPW
Dreiphasig, 4-Leiter- System, Dreiecksschaltung, mit Mittelabgriff	3PH4L Drei., Mittelabgr.	Lut .	347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	3 SPW

Beschreibung des Systemtyps	Messgeräteinstel- lung	Symbol	Maximalspannung bei Direktanschluss (UL)	Maximalspannung bei Direktanschluss (IEC)	Anzahl Spannungs- wandler (bei Bedarf)
Dreiphasig, 4-Leiter- System, Sternschaltung, nicht geerdet	3PH4L Stern, n. geerd.		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	3 oder 2 SPW
Dreiphasig, 4-Leiter- System, Sternschaltung, geerdet	3PH4L Stern, geerdet		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	3 oder 2 SPW
Dreiphasig, 4-Leiter- System, Sternschaltung, widerstandsgeerdet	3PH4L Stern, R geerdet		347 V L–N bzw. 600 V L–L	400 V L–N bzw. 690 V L–L	3 oder 2 SPW
HINWEIS:					

Verwenden Sie für die Spannungseingangsklemmen des Messgeräts eine 500-mA-Sicherung oder einen Leistungsschalter.

• Verwenden Sie zwischen dem Stromwandler und den Stromeingangsklemmen des Messgeräts einen Messklemmenblock.

• Verwenden Sie Primärsicherungen und Trennschalter, um den Spannungswandler zu schützen.

Überlegungen zu symmetrischen Systemen

Bei der Überwachung einer symmetrischen 3-Phasen-Last könnten Sie u. U. entscheiden, nur einen oder zwei Stromwandler an die zu messenden Phasen anzuschließen und das Messgerät so zu konfigurieren, dass es den Strom an den nicht angeschlossenen Stromeingängen berechnet.

HINWEIS: Bei einem symmetrischen 4-Leiter-System in Sternschaltung wird bei den Berechnungen des Messgeräts angenommen, dass kein Strom durch den Neutralleiter fließt.

Symmetrisches 3-Phasen-System in Sternschaltung mit 2 Stromwandlern

Der Strom für den nicht angeschlossenen Stromeingang wird so berechnet, dass die Vektorsumme aller drei Phasen null ist.

Symmetrisches 3-Phasen-System in Stern- oder Dreiecksschaltung mit 1 Stromwandler

Die Ströme für die nicht angeschlossenen Stromeingänge werden so berechnet, dass ihre Beträge und Phasenwinkel identisch sowie gleichmäßig verteilt sind und dass die Vektorsumme aller drei Phasenströme null ist.

HINWEIS: Bei Dreiphasensystemen mit 4 Leitern in Dreiecks- bzw. offener Dreiecksschaltung mit Mittelabgriff müssen immer 3 Stromwandler verwendet werden.

Steuerspannung (Hilfsspannung)

MID/MIR-Steuerspannungsanforderungen (Hilfsspannung)

Die Hilfsspannungsversorgung darf nicht auf der Lastseite des Messkreises angeschlossen werden.

Die Hilfsspannungsversorgung des Messgeräts muss so angeschlossen werden, dass ein unterbrechungsfreier Messgerätbetrieb in Situationen gewährleistet ist, in denen eine oder zwei Phasen des Messkreises unbestromt sind.

Es wird empfohlen, eine Hilfsspannungsquelle wie etwa eine DC-Stationsbatterie oder USV zu verwenden, die vom Messkreis unabhängig ist.

Ein externes 3-Phasen-Netzteil kann als Hilfsspannungsquelle verwendet werden, wenn es von allen drei Phasen der Einspeiseseite (Versorger) des Messkreises bestromt wird.

Kommunikationsanschlüsse

RS-485-Anschluss

Schließen Sie die Geräte am RS-485-Bus in einer Punkt-zu-Punkt-Konfiguration an, wobei die Klemmen (+) und (–) eines Geräts an die entsprechenden Klemmen (+) und (–) des nächsten Geräts angeschlossen werden müssen.

RS-485-Kabel

Verwenden Sie für den Anschluss der Geräte ein geschirmtes RS-485-Twisted-Pair-Kabel (2 bzw. 1,5 Adernpaare). Benutzen Sie ein verdrilltes Adernpaar für die Verbindung der Anschlüsse (+) und (–) und die andere isolierte Leitung für die Verbindung der C-Klemmen.

Die Gesamtdistanz zwischen Geräten und dem RS-485-Bus, an dem sie angeschlossen sind, darf 1200 m nicht überschreiten.

RS-485-Klemmen

С	Gemeinsame Leitung – Stellt die Bezugsspannungsquelle (0 Volt) für die Plus- und Minus- Signale der Datenübertragung bereit.
₽	Abschirmung – Schließen Sie den Blankdraht an diese Klemme an, um eventuelles Signalrauschen zu unterdrücken. Erden Sie die Abschirmung nur an einem Ende (entweder am Master- oder am letzten Slave-Gerät, aber nicht an beiden Geräten).
-	Daten Minus – Sendet/empfängt die invertierenden Datensignale.
+	Daten Plus – Sendet/empfängt die nicht invertierenden Datensignale.

HINWEIS: Wenn einige Geräte in Ihrem RS-485-Netz keine C-Klemme haben, verwenden Sie den Blankdraht des RS-485-Kabels, um die C-Klemme des Messgeräts mit der Abschirmungsklemme an Geräten, die keine C-Klemme haben, zu verbinden.

Ethernet-Kommunikationsverbindungen

Für den Anschluss an die Ethernet-Schnittstelle des Messgeräts ist ein geschirmtes Ethernetkabel zu verwenden.

Am Messgerät ist kein Erdungsanschluss vorhanden. Die Schirmung muss am anderen Ende geerdet werden. Die Ethernet-Anschlussquelle sollte an einem Ort installiert sein, von dem aus die Kabel der gesamten Ethernet-Verkabelung möglichst kurz gehalten werden können.

Display

Display-Überblick

Über das Display können Sie verschiedene Aufgaben mit dem Messgerät ausführen, wie z. B. Einrichten des Messgeräts, Anzeigen von Datenbildschirmen, Quittieren von Alarmen oder Durchführen von Rücksetzungen.

Standard-Anzeigebildschirm

Der Standard-Anzeigebildschirm hängt vom jeweiligen Messgerät-Modell ab.

Der Bildschirm **Übersicht** ist der Standardbildschirm für alle Messgerät-Modelle außer PM5331 / PM5341.

Auf dem Bildschirm **Übersicht** werden Echtzeitwerte für Spannungs- und Strommittelwert (UØ, IØ), für die Gesamtleistung (Ptot.) und für den Energieverbrauch (E Lief) angezeigt.

Der Bildschirm **Systemtyp** ist der Standardbildschirm für die Messgerät-Modelle PM5331 / PM5341.

F Systemtyp 3PH4L Stern geerdet Freq 50 Hz Tarif 0 L+B 205.09 kWh I U-V PQS	А	Kumulierte Wirkenergie (geliefert + bezogen)
	В	Aktiver Tarif
	С	Netzfrequenz
	D	Systemtypeinstellung
	E	Symbol für Steuerspannungsunterbrechungsereignisse (Hilfsspannung)
	F	Sperr-/Freigabesymbol
		•

Benachrichtigungssymbole

Um den Bediener auf Messgerät-Zustände bzw. -Ereignisse aufmerksam zu machen, erscheinen auf dem Displaybildschirm oben links bzw. rechts Benachrichtigungssymbole.

Symbol	Beschreibung
	Das Schraubenschlüsselsymbol zeigt an, dass für das Power Meter eine Wartung erforderlich ist.
\triangle	Das Warnsymbol zeigt an, dass ein Alarmzustand aufgetreten ist.
	Das blinkende Statussymbol zeigt an, dass sich das Power Meter im normalen Betriebszustand befindet.
(Wird nur auf MID/MIR-konformen Messgerätmodellen angezeigt)	Das Symbol zeigt an, dass ein Steuerspannungsunterbrechungsereignis (Hilfsspannung) aufgetreten ist.

Messgeräteanzeigesprache

Das Messgerät kann so konfiguriert werden, dass die Informationen auf dem Display-Bildschirm in einer der folgenden Sprachen angezeigt werden.

Folgende Sprachen sind verfügbar:

- Englisch
- Französisch
- Spanisch
- Deutsch
- Italienisch
- Portugiesisch
- Russisch
- Chinesisch

Navigation der Messgerätbildschirme

Mit den Tasten des Messgeräts und dem Displaybildschirm können Sie zu den Daten- und Einrichtungsbildschirmen navigieren und die Einrichtungsparameter des Messgeräts konfigurieren.

Navigationssymbole

Navigationssymbole zeigen die Funktionen der zugehörigen Tasten auf dem Display Ihres Messgeräts an.

Symbol	Beschreibung	Aktionen
►	Rechtspfeil	Nach rechts scrollen und weitere Menüpunkte anzeigen oder oder den Cursor um ein Zeichen nach rechts bewegen
	Aufwärts-Pfeil	Bildschirm verlassen und eine Ebene nach oben gehen
•	Kleiner Abwärts- Pfeil	Cursor in der Optionsliste nach unten bewegen oder mehr Punkte darunter anzeigen
•	Kleiner Aufwärts- Pfeil	Cursor in der Punkteliste nach oben bewegen oder weitere Punkte darüber anzeigen
•	Linkspfeil	Cursor ein Zeichen nach links bewegen
+	Plus-Zeichen	Markierten Wert erhöhen oder den nächsten Punkt in der Liste anzeigen.
-	Minus-Zeichen	Vorherigen Punkt in der Liste anzeigen

Wenn Sie den letzten Bildschirm erreicht haben, drücken Sie erneut den Rechtspfeil, um durch die Bildschirmmenüs zu blättern.

Übersicht Messgerät-Bildschirmmenüs

Alle Bildschirme des Messgeräts sind entsprechend ihrer Funktion logisch organisiert.

Indem Sie zuerst den entsprechenden Bildschirm der Ebene 1 (Bildschirm der obersten Ebene) auswählen, können Sie jeden verfügbaren Messgerät-Bildschirm aufrufen.

Bildschirmmenüs der 1. Ebene – IEEE-Titel [IEC-Titel]

┍╸Ӣ	Amp [I] → Volt [U–V] →Leist [PQS] → Energ [E] → LF → Hz [F] → THD →	
	→ Oberw. → Unsym → Mn/Mx → Alarm → E/A → Timer → QR → Wart → Uhr	Ъ

Menübaum

Verwenden Sie den Menübaum, um zu dem Parameter bzw. zu der Einstellung zu navigieren, den bzw. die Sie anzeigen oder konfigurieren möchten.

Messgerätbildschirme der Ebene 1, 2 und 3 – IEEE-Titel [IEC-Titel]

Die nachstehende Abbildung enthält eine Übersicht der verfügbaren Messgerät-Bildschirme (es sind die IEEE-Menüs mit den entsprechenden IEC-Menüs in Klammern dargestellt).

Datenanzeigebildschirme

Die Anzeigebildschirme des Messgeräts gestatten Ihnen die Betrachtung der Messgerätwerte und die Konfiguration der Einstellungen.

Die aufgelisteten Titel entsprechen dem IEEE-MMI-Modus, wobei die entsprechenden Titel im IEC-Modus in eckigen Klammern [] angegeben sind.

• Aufzählungselemente zeigen Unterbildschirme und deren Beschreibung an.

Amp [l]

Amp [l]	Momentanstromwerte für jede Phase und den berechneten Neutralleiter (In) oder den berechneten Erdleiterstrom (Ig) – je nach Verdrahtungstyp des Messgeräts.
MW	Übersicht über die Spitzenstrommittelwerte im letzten Mittelwertintervall:
• IØ	 Echtzeitmittelwert (Akt.), Spitzenmittelwert (Spitz) und prognostizierter Mittelwert (Prog) für das aktuelle Intervall Durchschnittlicher Mittelwert für den vorherigen (Last)-Intervall.
• Sp.D/Z	Datums- und Zeitstempel für die Spitzenmittelwerte

Volt [U–V]

V L-L [U]	Phase-Phase-Spannung für jede Phase
V L-N [V]	Phase-Neutral-Spannung für jede Phase

Leist [PQS]

Leist [PQS]	Übersicht über die Echtzeit-Leistungsaufnahmewerte der Gesamt-Wirkleistung in kW (Total [Ptot.]), der Gesamt-Blindleistung in kVAR (Total [Qtot.]) und der Gesamt-Scheinleistung in kVA (Total [Stot.])
Phase Aktiv [P], Blind [Q], Schein [S] 	Pro-Phase- (A [P1], B [P2], C [P3]) und Gesamtleistungswerte (Total [Ptot.]) der Wirkleistung in kW, Blindleistung in kVAR und Scheinleistung in kVA
MW • W MW [P MW], VARMW [QM], VA MW [S MW] ₀ Sp.D/Z	 Übersicht über die Spitzenleistungsmittelwerte in der vorherigen Mittelwertintervallperiode (Letzt) für Wirkleistung in kW, Scheinleistung in kVAR und Scheinleistung in kVA Gesamtleistungsmittelwerte im vorherigen Mittelwertintervall (Letzt) für Wirkleistungsmittelwert (W MW [P MW]), Blindleistungsmittelwert (VARMW [Q]) und Scheinleistungsmittelwert (VA MW [S]). Zeigt Folgendes an: Mittelwerte für das aktive Mittelwertintervall (Akt.), den Mittelwert für die vorherige Mittelwertintervallperiode (Letzt), den prognostizierten Mittelwert (Prog) auf der Basis des aktuellen Energieverbrauchs und den aufgezeichneten Spitzenleistungsmittelwert (Spitz). Datums- und Zeitstempel für den Spitzenleistungsmittelwert (Spitz)
• QR	Leistungsmittelwert-Parameter, die im QR-Codeformat eingebettet sind.

Energ [E]

Wh, VAh, VARh	Kumulierte Werte für gelieferte (Lief.), bezogene (Bez.), gelieferte plus bezogene (L+B) sowie gelieferte minus bezogene (L-B) Wirkenergie (Wh), Scheinenergie (VAh) und Blindenergie (VARh)
Tarif	
• T1, T2, T3, T4	 Zeigt die verfügbaren Mehrfachtarife an (T1 bis T4).
∘ Lief	 Gelieferte Wirkenergie in Wh (W [P]), gelieferte Blindenergie in VARh (VAR [Q]) und gelieferte Scheinenergie in VAh (VA [S]) für den ausgewählten Mehrfachtarif.
∘ Bez	 Bezogene Wirkenergie in Wh (W [P]), bezogene Blindenergie in VARh (VAR [Q]) und bezogene Scheinenergie in VAh (VA [S]) f ür den ausgew ählten Mehrfachtarif.
QR	Energieparameter (Wh, VAh, VARh und Mehrfachtarif), die im QR-Codeformat eingebettet sind.

LF

Wahr	Pro-Phase- und Gesamtwerte sowie Vorzeichen für realen Leistungsfaktor
CosPhi	Pro-Phase- und Gesamtwerte sowie Vorzeichen für Cosinus Phi

Hz [F]

Frequenz (Freq). Auf dieser Seite werden auch der Spannungsmittelwert (UØ), der Strommittelwert (IØ) und der Gesamtleistungsfaktor (LF) angezeigt.

THD

THD • Amp [l], V L-L [U], V L-N [V]	THD (Anteil der Oberwellen im Verhältnis zur Grundwellenamplitude) für Strom sowie Phase- Phase- und Phase-Neutral-Spannung
thd • Amp [I], V L-L [U], V L-N [V]	thd (Anteil der Oberwellen im Verhältnis zum Effektivwert der Gesamtoberwellen) für Strom sowie Phase-Phase- und Phase-Neutral-Spannung
QR	Leistungsqualität-Parameter (THD und thd), die im QR-Codeformat eingebettet sind.

Oberw

V L-L [U] • 3-11, 13-21, 23-31	Oberwellendaten der Phase-Phase-Spannung: Betrag und Winkel der Grundwellenamplitude sowie grafische Darstellung der ungeraden Oberwellen der 3. bis 11., der 13. bis 21. und der 23. bis 31. Ordnung für jede Phase-Phase-Spannung
V L-N [V] • 3-11, 13-21, 23-31	Oberwellendaten der Phase-Neutral-Spannung: Betrag und Winkel der Grundwellenamplitude sowie grafische Darstellung der ungeraden Oberwellen der 3. bis 11., der 13. bis 21. und der 23. bis 31. Ordnung für jede Phase-Neutral-Spannung
Amp [l] • 3-11, 13-21, 23-31	Stromoberwellendaten: Betrag und Winkel der Grundwellenamplitude sowie grafische Darstellung der ungeraden Oberwellen der 3. bis 11., der 13. bis 21. und der 23. bis 31. Ordnung für jeden Phasenstrom
TDD	Gesamte Mittelwertverzerrung für jede Phasenspannung

Unsym

Unsymmetriewerte in Prozent für Phase-Phase-Spannung (V -L [U]), Phase-Neutral-Spannung (V L-N [V]) und Strom (Amp [I])

Mn/Mx

Amp [l]	Übersicht über die Minimal- und Maximalwerte für den Phasenstrom
Volt [U–V] • V L-L [U], V L-N [V]	Übersicht über die Minimal- und Maximalwerte für Phase-Phase-Spannung und Phase-Neutral- Spannung
Leist [PQS] Aktiv [P], Blind [Q], Schein [S] 	Minimal- und Maximalwerte für Wirk-, Blind- und Scheinleistung
LF • LF, CosPhi	Minimal- und Maximalwerte für realen Leistungsfaktor, Cos Phi und LF-Vorzeichen
Hz [F]	Minimal- und Maximalwerte der Frequenz
тно	
• THD, thd ∘ Amp [I], V L-L [U], V L-N [V]	 Minimal- und Maximalwerte des Klirrfaktors (THD oder thd) Minimal- und Maximalwerte des Klirrfaktors (THD oder thd) für Phasen- oder Neutralleiterstrom, Phase-Phase-Spannung und Phase-Neutral-Spannung
Unsym • Amp [I], V L-L [U], V L-N [V]	Minimal- und Maximalwerte für Stromunsymmetrie, Phase-Phase- und Phase-Neutral- Spannungsunsymmetrie
QR	Minimal- und Maximalwerte (Phasenstrom, Phase-Phase-Spannung, Phase-Neutral-Spannung, Leistung (PQS), LF, Frequenz, Leistungsqualität und Unsym), die im QR-Codeformat eingebettet sind.

Alarm

Aktiv, Verlauf, Zählung, Unbeant.	Liste mit allen aktiven (Aktiv) und vergangenen (Hist.) Alarmen, Gesamtzahl der Auslösungen für jeden Standardalarm (Zähl.) und allen nicht bestätigten Alarmen (N. b.)
QR	Alarmparameter (aktive, vergangene Alarme, Gesamtzahl der Auslösungen für jeden Standardalarm, nicht bestätigt), die im QR-Codeformat eingebettet sind.

Ein- und Ausgänge

DAusg	Aktueller Status (Ein oder Aus) des ausgewählten Digitalausgangs, Statuseingangs bzw.
• D1, D2	Relaisausgangs. Der Zähler zeigt die Gesamtzahl an, wie oft ein Aus-Ein-Zustandswechsel
SEing	Statuseingang bzw. Relais den Status "Ein" hat.
• S1, S2	
Relais (nur PM5330 / PM5331 / PM5340 / PM5341)	
• R1, R2	

Timer

Last	Echtzeitzähler, der die Gesamtzeit in Tagen, Stunden, Minuten und Sekunden verfolgt, für die eine aktive Last an den Eingängen des Messgeräts angeschlossen ist.
Betr	Echtzeitzähler der Gesamtzeit in Tagen, Stunden, Minuten und Sekunden, für die das Messgerät eingeschaltet ist.

QR

Informationen zum Messgerät, Energieparameter, Leistungsmittelwert-Parameter, grundlegende Parameterwerte (Strom, Spannung und Leistung), Leistungsqualität-Parameter, Minimal-/Maximalwerte (Phasenstrom, Phase-Phase-Spannung, Phase-Neutral-Spannung, Leistung (PQS), LF, Frequenz, Leistungsqualität und Unsym), Alarmparameter und Datenprotokoll-Parameter, die im QR-Codeformat eingebettet sind.

Wart

Res	et	Bildschirme zur Durchführung von globalen und Einzel-Resets
Setu	ıp	
•	Messg Einf Erw MW Tarif	 Bildschirme zur Konfiguration des Messgeräts Bildschirme zur Festlegung des Stromversorgungsnetzes und seiner Komponenten/ Elemente Bildschirme zur Einrichtung des aktiven Last-Timers und zur Festlegung des Spitzenstrommittelwertes für die Einbeziehung in TDD-Berechnungen Bildschirme zur Einrichtung der Mittelwerte für Leistung, Strom und Eingangsimpulsmessung Bildschirme zur Einrichtung von Mehrfachtarifen
•	Komm • Seriell (nur PM5310 / PM5330 / PM5331) • Enet (nur PM5320 / PM5340 / PM5341) • BACnet (nur PM5320 / PM5340 / PM5341)	Bildschirme zur Einrichtung der seriellen, Ethernet- und BACnet- Kommunikationsschnittstellen
•	Alarm ∘ 1-Sek., Intern, Dig	 Bildschirme zur Einrichtung von Standardalarmen (1-Sek) sowie internen und digitalen Alarmen
•	E/A LED SEing DAusg Relais (nur PM5330 / PM5331 / PM5340 / PM5341)	 Bildschirme zur Einrichtung der Alarm-/Energieimpuls-LED, der Digitaleingänge/- ausgänge und der Relaisausgänge
•	MMI ∘ Anz., Reg., Kennw	 Bildschirme zur Konfiguration von Displayeinstellungen, zur Bearbeitung von Regionaleinstellungen sowie zur Einrichtung von Kennwörtern für den Zugriff auf das Messgerät über das Display.
•	Uhr	Bildschirme zur Einrichtung von Datum und Uhrzeit des Messgeräts
Diag	In	Die Diagnosebildschirme enthalten Messgerätinformationen sowie Status- und Ereignisdaten für die Fehlerbehebung.

Wart (Fortsetzung)

• Info	 Auf dem Bildschirm "Info" werden das Messgerätmodell, die Seriennummer, das Herstellungsdatum, die Firmwareversion (einschließlich BS [Betriebssystem] und RS [Resetsystem]), die Sprachversion, die werkseitig eingestellte MAC-Adresse* (z. B.: 9C- 35-5B-5F-4C-4D) und die BS-CRC (zyklische Redundanzprüfung) angezeigt. Der BS- CRC-Wert ist eine Zahl (Hexadezimalformat), die die Unverwechselbarkeit zwischen verschiedenen BS-Firmwareversionen gewährleistet. * Nur zutreffend für die Messgerätmodelle PM5320 / PM5340 / PM5341.
• Messg	Zeigt den Status des Messgeräts an.
• Uste.	 Nicht-MID/MIR-Messgerätmodelle: Auf dem Bildschirm "Uste." wird angezeigt, wie oft die Steuerspannung des Messgeräts unterbrochen wurde, sowie Datum und Uhrzeit des letzten Auftretens.
	 MID/MIR-Messgerätmodelle: Auf dem Bildschirm "Uste." wird angezeigt, wie oft die Steuerspannung des Messgeräts (Hilfsspannung) unterbrochen wurde, sowie die letzten Ein- und Ausschaltereignisse mit dem jeweiligen Zeitstempel.
• PhW	Auf dem PhW-Bildschirm wird eine grafische Darstellung des vom Messgerät überwachten Stromnetzes angezeigt.
• QR	Informationen zum Messgerät, die im QR-Codeformat eingebettet sind.

Uhr

```
Datum und Uhrzeit des Messgeräts (Ortszeit oder GMT)
```

HMI-Einrichtungsbildschirme

Sie können das Display des Messgeräts über die HMI-Einrichtungsbildschirme konfigurieren.

Mit den MMI-Einrichtungsbildschirmen (Mensch-Maschine-Interface) können Sie:

- Das allgemeine Erscheinungsbild und Verhalten der Anzeigebildschirme festlegen
- Die Regionaleinstellungen ändern
- Die Messgerät-Kennwörter ändern
- Die QR-Code-Funktion für den Zugriff auf Messgerätdaten aktivieren bzw. deaktivieren.

Weitere Informationen zum Zugriff auf Messgerätdaten mithilfe von QR-Codes finden Sie in der Schnellstartanleitung Messgerät-Einsichten, QR-Code.

Display einrichten

Sie können die Display-Bildschirmeinstellungen, z. B. Kontrast, Display- und Hintergrundbeleuchtungsdauer und QR-Code-Display ändern.

- 1. Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie **OK**.
- 2. Navigieren Sie zu MMI > Anz..
- 3. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.
- 4. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 5. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Edit**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 6. Zum Verlassen drücken Sie den Aufwärtspfeil.

7. Drücken Sie Ja, um Ihre Änderungen zu speichern.

Displayeinstellungen, die durch Benutzung des Displays verfügbar sind

Parameter	Werte	Beschreibung
Kontrast	1–9	Erhöhen oder verringern Sie den Wert, um den Kontrast der Anzeige zu erhöhen bzw. zu verringern.
Beleucht.dauer (min)	0–99	Stellen Sie ein, nach wie vielen Minuten der Inaktivität die Helligkeit der Hintergrundbeleuchtung reduziert werden soll. Mit der Werkeinstellung "0" wird die Zeitabschaltfunktion der Hintergrundbeleuchtung deaktiviert (d. h. die Hintergrundbeleuchtung bleibt immer an).
Bildschirm aus (min)	0–99	Stellen Sie ein, nach wie vielen Minuten der Inaktivität der Bildschirm ausgeschaltet werden soll. Mit der Werkeinstellung "0" wird die Zeitabschaltfunktion des Bildschirms deaktiviert (d. h. die Anzeige bleibt immer an).
QR-Code	Aktivieren, Deaktivieren	Stellen Sie ein, ob QR-Codes mit eingebundenen Daten auf dem Display verfügbar sind oder nicht.

Weitere Informationen zum Zugriff auf Messgerätdaten mithilfe von QR-Codes finden Sie in der *Schnellstartanleitung Messgerät-Einsichten, QR-Code*.

Zur Konfiguration des Displays mithilfe von ION Setup lesen Sie bitte den Abschnitt für Ihr Messgerät in der ION Setup-Onlinehilfe oder im ION Setup-Gerätekonfigurationsleitfaden, der zum Herunterladen unter www.se.com verfügbar ist.

Grundeinstellung

Die Messgerätkonfiguration kann direkt über das Display oder extern über Software durchgeführt werden. Lesen Sie den Abschnitt zu einer Funktion, um Anweisungen zur Konfiguration dieser Funktion zu erhalten (lesen Sie z. B. den Abschnitt Kommunikationsschnittstellen für Anweisungen zur Konfiguration der Ethernet-Schnittstellen).

Konfiguration von Basis-Einrichtungsparametern über das Display

Sie können mit dem Display Basisparameter des Messgeräts konfigurieren.

Die richtige Konfiguration der Grundeinrichtungsparameter des Messgeräts ist wichtig für genaue Messungen und Berechnungen. Auf dem Bildschirm "Grundeinricht." legen Sie das Stromversorgungsnetz fest, das vom Messgerät überwacht wird.

Wenn Standardalarme (1-Sek) konfiguriert wurden, und Sie nehmen danach Änderungen an der Grundeinrichtung des Messgeräts vor, werden alle Alarme deaktiviert, um eine unerwünschte Alarmauslösung zu verhindern.

AWARNUNG

NICHT BESTIMMUNGSGEMÄSSER GERÄTEBETRIEB

- Überprüfen Sie, ob alle Standardalarmeinstellungen korrekt sind, und passen Sie sie bei Bedarf an.
- Aktivieren Sie erneut alle konfigurierten Alarme.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Überprüfen Sie nach dem Speichern der Änderungen, ob alle konfigurierten Standardalarmeinstellungen immer noch gültig sind. Konfigurieren Sie sie bei Bedarf neu und aktivieren Sie erneut die Alarme.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Messg > Einf.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 6. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Edit**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.

7. Drücken Sie zum Verlassen den Aufwärtspfeil und dann auf **Ja**, um Ihre Änderungen zu speichern.

Basis-Einrichtungsparameter, die über das Display verfügbar sind

Werte	Beschreibung			
Stromnetz				
Wählen Sie die Art des Stromversorgungsnetzes (Leistungswandler) aus, an dem das Messgerät angeschlossen ist.				
1PH2L LN	Einphasig, 2-Leiter-System, Phase/Neutral			
1PH2L LL	Einphasig, 2-Leiter-System, Phase/Phase			
1PH3L LL mit N	Einphasig, 3-Leiter-System, Phase/Phase mit Neutralleiter			
3PH3L Drei., n. geerd.	Dreiphasig, 3-Leiter-System, Dreiecksschaltung, nicht geerdet			
3PH3L Drei., st. geerd.	Dreiphasig, 3-Leiter-System, Dreiecksschaltung, starr geerdet			
3PH3L Stern, n. geerd.	Dreiphasig, 3-Leiter-System, Sternschaltung, nicht geerdet			
3PH3L Stern, geerdet	Dreiphasig, 3-Leiter-System, Sternschaltung, geerdet			
3PH3L Stern, R geerdet	Dreiphasig, 3-Leiter-System, Sternschaltung, widerstandsgeerdet			
3PH4L off. Drei., M.abgr	Dreiphasig, 4-Leiter-System, offene Dreiecksschaltung, mit Mittelabgriff			
3PH4L Drei., Mittelabgr.	Dreiphasig, 4-Leiter-System, Dreiecksschaltung, mit Mittelabgriff			
3PH4L Stern, n. geerd.	Dreiphasig, 4-Leiter-System, Sternschaltung, nicht geerdet			
3PH4L Stern, geerdet	Dreiphasig, 4-Leiter-System, Sternschaltung, geerdet			
3PH4L Stern, R geerdet	Dreiphasig, 4-Leiter-System, Sternschaltung, widerstandsgeerdet			
SPW-Anschluss Wählen Sie die Anzahl der Spannungswandler (SPW) aus, die am Stromversorgungsnetz angeschlossen sind.				
Direktanschl.	Direktanschluss, keine Spannungswandler verwendet			
2SPW	2 Spannungswandler			
3SPW	3 Spannungswandler			
Primär-SPW (V)				
1 bis 1.000.000	Geben Sie den Primär-SPW-Wert in Volt ein.			
Sekundär-SPW (V)				
100, 110, 115, 120	Geben Sie den Sekundär-SPW-Wert in Volt ein.			
STW an Klemme Definieren Sie, wie viele Stromwandler (STW) am Messgerät angeschlossen werden und an welche Klemmen sie angeschlossen werden.				
11	1 STW angeschlossen an Klemme I1			
12	1 STW angeschlossen an Klemme I2			
13	1 STW angeschlossen an Klemme I3			
11, 12	2 STW angeschlossen an Klemme I1 und I2			
11, 13	2 STW angeschlossen an Klemme I1 und I3			
12, 13	2 STW angeschlossen an Klemme I2 und I3			
11, 12, 13	3 STW angeschlossen an Klemme I1, I2 und I3			
Primär-STW (A)				
1 bis 32767	Geben Sie den Primär-STW-Wert in Ampere ein.			
Sekundär-STW (A)				
1, 5	Geben Sie den Sekundär-STW-Wert in Ampere ein.			
Sys. Frequenz (Hz)				
50, 60	Wählen Sie die Frequenz des Stromversorgungs-netzes in Hz aus.			

Basis-Einrichtungsparameter, die über das Display verfügbar sind (Fortsetzung)

Werte	Beschreibung		
Phasendrehrichtung			
ABC, CBA	Wählen Sie die Phasendrehrichtung des 3-Phasen-Systems aus.		

Konfiguration fortgeschrittener Einrichtungsparameter über das Display

Sie können eine Untergruppe von fortgeschrittenen Parametern über das Display konfigurieren.

- 1. Navigieren Sie zu **Wart > Einr.**.
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Messg > Erw..
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 6. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Edit**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 7. Drücken Sie Ja, um Ihre Änderungen zu speichern.

Fortgeschrittene Einrichtungsparameter, die über das Display verfügbar sind

Parameter	Werte	Beschreibung
Bezeichnung	—	Diese Bezeichnung kennzeichnet das Gerät, wie z.B. "Power Meter". Sie können diesen Parameter nicht über das Display bearbeiten. Verwenden Sie ION Setup zur Änderung der Gerätebezeichnung.
Sollw. Last-Timer(A)	0 - 18	Gibt den Mindeststrommittelwert an der Last an, bei dem der Timer startet. Das Messgerät beginnt mit der Zählung der Anzahl der Sekunden, die der Last-Timer eingeschaltet ist (d.h. immer wenn die Messwerte gleich oder höher diesem Ansprechwert des Strommittelwerts sind).
I Max. MW f. TDD (A)	0 - 18	Gibt den Mindest-Spitzenstrommittelwert an der Last an, der für die Berechnung der gesamten Mittelwertverzerrung (TDD) vorhanden sein muss. Wenn der Laststrom unter dem Ansprechwert für den Mindest-Spitzenstrommittelwert liegt, verwendet das Messgerät die Messwerte nicht zur Berechnung der TDD. Stellen Sie diesen Parameter auf "0" (null) ein, wenn das Messgerät den gemessenen Spitzenstrommittelwert für diese Berechnung verwenden soll.

Regionaleinstellungen einrichten

Sie können die Regionaleinstellungen ändern, um die Bildschirme des Messgeräts zu lokalisieren und die Daten in einer anderen Sprache sowie unter Verwendung zugehöriger Normen und Konventionen anzuzeigen.

HINWEIS: Um eine andere Sprache als die im Einrichtungsparameter Language aufgelisteten Sprachen anzeigen zu können, müssen Sie die entsprechende Sprachdatei für das Messgerät mit einem Firmware-Aktualisierungsverfahren herunterladen.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu MMI > Region.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 6. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 7. Zum Verlassen drücken Sie den Aufwärtspfeil.
- 8. Drücken Sie Ja, um Ihre Änderungen zu speichern.

Regionaleinstellungen, die durch Benutzung des Displays verfügbar sind

Parameter	Werte	Beschreibung
Sprache	Englisch US, Französisch, Spanisch, Deutsch, Italienisch, Portugiesisch, Chinesisch, Russisch	Wählen Sie die Sprache aus, die das Messgerät anzeigen soll.
Datumsformat	MM/TT/JJ, JJ/ MM/TT, TT/MM/ JJ	Stellen Sie ein, wie das Datum angezeigt werden soll, z. B. Monat/Tag/Jahr.
Zeitformat	24 h, AM/PM	Stellen Sie ein, wie die Uhrzeit angezeigt werden soll, z. B. 17:00:00 oder 5:00:00 PM.
MMI-Modus	IEC, IEEE	Wählen Sie die Standardkonvention aus, die für die Anzeige von Menünamen oder Messgerätdaten verwendet werden soll.

Bildschirmkennwörter einrichten

Es wird empfohlen, dass Sie die Standardkennwörter ändern, um zu verhindern, das nicht-autorisiertes Personal auf passwortgeschützte Bildschirme wie die Diagnose- und Reset-Bildschirme zugreift.

Diese Konfiguration kann nur über das Front-Bedienfeld durchgeführt werden. Die werkseitige Voreinstellung für alle Kennwörter ist "0" (null).

Wenn Sie Ihr Kennwort verlieren, müssen Sie das Messgerät für eine Neukonfiguration zum Hersteller zurückschicken. Dadurch wird Ihr Gerät auf die Werkeinstellungen zurückgesetzt und alle aufgezeichneten Daten werden zerstört.

HINWEIS

ENDGÜLTIG VERLORENES KENNWORT

Vermerken Sie die Benutzer- und Kennwort-Informationen für Ihr Messgerät an einem sicheren Ort.

Die Nichteinhaltung dieser Anweisungen kann zu Datenverlust führen.

- 1. Navigieren Sie zu Wart > Einr.
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu HMI > Pass.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.

- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 6. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 7. Zum Verlassen drücken Sie den Aufwärtspfeil.
- 8. Drücken Sie Ja, um Ihre Änderungen zu speichern.

Parameter	Werte	Beschreibung
Setup	0000 - 9999	Legt das Kennwort für den Zugriff auf die Einrichtungsbildschirme des Messgeräts fest (Wart > Einr.).
Energie-Resets	0000 - 9999	Legt das Kennwort für die Zurücksetzung der kumulierten Energiewerte des Messgeräts fest.
Mittelwert- Resets	0000 - 9999	Legt das Kennwort für die Zurücksetzung der im Messgerät aufgezeichneten Spitzenmittelwerte fest.
Min/Max-Resets	0000 - 9999	Legt das Kennwort für die Zurücksetzung der im Messgerät aufgezeichneten Minimal- und Maximalwerte fest.
Diagnose	0000 - 9999	Legt das Kennwort für den Zugriff auf die Diagnosebildschirme des Messgeräts fest.

Verlorener Benutzerzugriff

Wenn Sie die Benutzer-Zugriffsinformationen (Kennwort) Ihres Messgeräts verlieren, kontaktieren Sie Ihren örtlichen Schneider Electric-Vertreter, um Anweisungen zur Rückstellung Ihres Messgeräts auf Werkskonfiguration zu erhalten.

HINWEIS: Halten Sie bitte die Seriennummer Ihres Messgeräts als Referenz bereit.

Einstellen der Uhr über das Display

Mit den Uhr-Einrichtungsbildschirmen können Sie das Datum und die Uhrzeit im Messgerät einstellen.

HINWEIS: Die Messgerät-Uhrzeit muss immer auf UTC-Zeit (GMT, Greenwich Mean Time) eingestellt oder damit synchronisiert werden (nicht auf Ortszeit). Verwenden Sie den Einrichtungsparameter **GMT-Abweichung (h)**, um die korrekte Ortszeit auf dem Messgerät anzuzeigen.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Uhr.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 6. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 7. Zum Verlassen drücken Sie den Aufwärtspfeil.

Parameter	Werte	Beschreibung
Datum	TT/MM/JJ	Stellen Sie das aktuelle Datum mit dem auf dem Bildschirm angezeigten Format
	MM/TT/JJ	ein, wodel "TT" der Tag, "MM" der Monat und "JJ" das Jahr Ist.
	JJ/MM/TT	
Uhrzeit	HH:MM:SS (24-Stunden- Format)	Verwenden Sie das 24-Stunden-Format für die Einstellung der aktuellen Uhrzeit gemäß UTC (GMT).
	HH:MM:SS AM oder PM	
Zeit Messgerät	GMT, Lokal	Wählen Sie "GMT" aus, wenn Sie die aktuelle Zeit auf die Zeitzone "Greenwich Mean Time" einstellen wollen. Wählen Sie anderenfalls "Lokal" aus.
GMT-Abweichung (h) ¹	± HH.0	Nur verfügbar, wenn die Option "Zeit Messgerät" auf "Lokal" eingestellt ist. Stellen Sie die GMT-Abweichung auf einen Wert zwischen "± 00,0" und "± 12,0" ein.

8. Drücken Sie Ja, um Ihre Änderungen zu speichern.

Zur Konfiguration der Uhr mithilfe von ION Setup lesen Sie bitte den Abschnitt für Ihr Messgerät in der ION Setup-Onlinehilfe oder im ION Setup-Gerätekonfigurationsleitfaden, der zum Herunterladen unter www.se.com verfügbar ist.

^{1.} Gegenwärtig werden nur ganze Zahlen unterstützt.

Cybersicherheit

Cybersicherheit-Übersicht

Dieses Kapitel enthält aktuelle Informationen über die Cybersicherheit Ihres Produkts. Netzwerkadministratoren, Systemintegratoren und Mitarbeiter, die ein Gerät in Betrieb nehmen, warten oder entsorgen, sollten Folgendes tun:

- Die Sicherheitsfunktionen des Geräts aktivieren und pflegen. Details hierzu finden Sie unter "Sicherheitsfunktionen des Geräts", Seite 41.
- Die Annahmen zu geschützten Umgebungen überprüfen. Einzelheiten hierzu finden Sie unter "Annahmen zur geschützten Umgebung", Seite 41.
- Potenzielle Risiken und Risikominderungsstrategien berücksichtigen. Details hierzu finden Sie unter "Potenzielle Risiken und ausgleichende Kontrollen", Seite 42.
- Befolgen Sie die Empfehlungen zur Optimierung der Cybersicherheit.

Ihr Gerät verfügt über Sicherheitsfunktionen, die Folgendes ermöglichen:

- Das Gerät ist Teil einer NERC CIP-konformen Anlage. Für weitere Informationen zu NERC-Zuverlässigkeitsstandards besuchen Sie die Website der North American Electric Reliability Corporation.
- Das Gerät entspricht den Cybersicherheitsnormen der internationalen Normenreihe IEC 62443 f
 ür gesch
 äftliche IT-Systeme und IACS-Produkte (industrielle Automatisierungs- und Steuerungssysteme). F
 ür weitere Informationen
 über die internationale Normenreihe IEC 62443 besuchen Sie die Website der International Electrotechnical Commission.

Um ein Sicherheitsthema anzusprechen, das ein Produkt oder eine Lösung von Schneider Electric betrifft, besuchen Sie http://www.se.com/en/work/support/ Cybersicherheit/vulnerability-policy.jsp.

AWARNUNG

POTENZIELLE GEFÄHRDUNG DER SYSTEMVERFÜGBARKEIT, -INTEGRITÄT UND -VERTRAULICHKEIT

- Ändern Sie Standard-Kennwörter, um bei der Vermeidung von nichtautorisiertem Zugriff auf Geräteeinstellungen und Informationen zu helfen.
- Deaktivieren Sie nach Möglichkeit nicht genutzte Ports bzw. Dienste und Standardkonten, damit Pfade für böswillige Angriffe minimiert werden.
- Schützen Sie vernetzte Geräte mit mehreren Cyberabwehrschichten (z. B. Firewalls, Netzwerksegmentierung sowie Netzwerk-Angriffserkennung und -Schutz).
- Nutzen Sie vorbildliche Verfahren f
 ür die Cybersicherheit (z. B. Konzept der geringsten Rechte, Aufgabentrennung), um unbefugte Offenlegung, Verlust, Ver
 änderung von Daten und Protokollen bzw. die Unterbrechung von Diensten oder einen unbeabsichtigten Betrieb zu verhindern.

Die Nichtbeachtung dieser Anweisungen kann Tod, schwere Verletzungen oder Sachschäden zur Folge haben.

Defense-in-Depth-Produktsicherheit

Verwenden Sie ein mehrschichtiges Netzwerkkonzept mit mehreren Sicherheitsund Verteidigungskontrollen in Ihrem IT- und Steuerungssystem, um Datenschutzlücken zu minimieren, Einzelschwachstellen zu verringern und eine starke Cybersicherheitsposition aufzubauen. Je mehr Sicherheitsschichten Ihr Netzwerk hat, desto schwerer machen Sie es Angreifern, Ihre Verteidigungsmaßnahmen zu durchbrechen, digitale Ressourcen zu entwenden oder Störungen zu verursachen.

Sicherheitsfunktionen des Geräts

Physische Sicherheit

Schlosssymbol für Verrechnungssicherheit auf dem Display als Anzeige dafür, ob die Verrechnungsmessung für das Gerät gesperrt ist.

Es werden mehrere manipulationssichere Plombierpunkte verwendet, um den Zugriff zu verhindern und Spuren einer Manipulation anzuzeigen.

Annahmen zur geschützten Umgebung

- Cybersicherheit-Governance verfügbare und aktuelle Anweisungen zur Verwendung von Daten und Technologie in Ihrem Unternehmen.
- Perimetersicherheit installierte Geräte sowie Geräte, die nicht im Einsatz sind, befinden sich an einem Ort, der Zugangskontrollen unterliegt oder überwacht wird.
- Notstrom mit dem Steuerungssystem kann die Notstromversorgung zu- und abgeschaltet werden, ohne dass der bestehende Sicherheitsstatus oder ein dokumentierter Störmodus beeinträchtigt wird.
- Firmware-Aktualisierungen Messgerätaktualisierungen erfolgen regelmäßig mit der aktuellen Firmware-Version.
- Kontrollen gegen Malware Erkennungs-, Präventions- und Wiederherstellungskontrollen für den Schutz vor Malware werden implementiert und es wird für eine entsprechende Benutzersensibilisierung gesorgt.
- Physische Netzwerksegmentierung das Steuerungssystem ermöglicht Folgendes:
 - Physische Trennung der Steuerungssystem-Netzwerke von Nichtsteuerungssystem-Netzwerken.
 - Physische Trennung der kritischen Steuerungssystem-Netzwerke von nicht kritischen Steuerungssystem-Netzwerken.
- Logische Isolation von kritischen Netzwerken mit dem Steuerungssystem können kritische Steuerungssystem-Netzwerke von nicht kritischen Steuerungssystem-Netzwerken logisch und physisch isoliert werden. Zum Beispiel durch die Verwendung von VLANs.
- Unabhängigkeit von Nichtsteuerungssystem-Netzwerken das Steuerungssystem stellt – kritischen oder nicht kritischen – Steuerungssystemnetzwerken Netzdienste ohne eine Verbindung zu Nichtsteuerungssystem-Netzwerken zur Verfügung.
- Verschlüsseln Sie Protokollübertragungen auf allen externen Verbindungen mit einem verschlüsselten Tunnel, einem TLS-Wrapper oder mit einer ähnlichen Lösung.
- Schutz der Zonengrenzen das Steuerungssystem ermöglicht Folgendes:
 - Verwaltung der Verbindungen über verwaltete Schnittstellen, die angemessene Geräte zum Schutz der Zonengrenzen umfassen, wie z. B. Proxys, Gateways, Router, Firewalls und verschlüsselte Tunnel.
 - Verwendung einer effektiven Architektur, wie z. B. Firewalls, die Anwendungs-Gateways in einer DMZ schützen.
 - Die Schutzma
 ßnahmen f
 ür die Steuerungssystem-Zonengrenzen m
 üssen an allen Verarbeitungsstandorten das gleiche Schutzniveau bieten wie am prim
 ären Standort, wie z. B. Rechenzentren.
- Keine öffentliche Internet-Konnektivität eine Zugriffsmöglichkeit für das Steuerungssystem auf das Internet wird nicht empfohlen. Wenn eine Verbindung zu einem entfernten Standort erforderlich ist, dann verschlüsseln Sie z. B. die Protokollübertragungen.

- Ressourcenverfügbarkeit und -redundanz die Fähigkeit, als Reaktion auf einen Vorfall die Verbindungen zwischen verschiedenen Netzwerksegmenten zu unterbrechen oder duplizierte Geräte einzusetzen.
- Verwaltung der Kommunikationslasten mit dem Steuerungssystem können Kommunikationslasten verwaltet werden, um die Auswirkungen von DoS-Ereignissen (Denial of Service) des Typs "Informationsüberflutung" abzumildern.
 - Steuerungssystemsicherung verfügbare und aktuelle Sicherungen zur Wiederherstellung nach einem Steuerungssystemausfall.

Potenzielle Risiken und ausgleichende Kontrollen

Begegnen Sie potenziellen Risiken mit diesen ausgleichenden Kontrollen:

Bereich	Problem	Risiko	Ausgleichende Kontrollen
Kennwort über Display	Werkeinstellungen bilden häufig ein Einfallstor für unbefugte Zugriffe durch böswillige Benutzer.	Wenn Sie das Standardkennwort nicht ändern, kann ein unbefugter Zugriff erfolgen.	Ändern Sie das Standardkennwort "0" (null), um unbefugte Zugriffe einzudämmen.
Sichere Protokolle	Eine Ethernet-Schnittstelle mit Modbus TCP- und BACnet/IP- Protokollen ist nicht sicher. Das Gerät kann über diese Protokolle keine verschlüsselten Daten übertragen.	Wenn sich ein böswilliger Benutzer Zugriff auf Ihr Netzwerk verschafft, kann er die Kommunikation mitlesen.	Wenn Sie Daten über ein internes Netzwerk übertragen, segmentieren Sie das Netzwerk physisch oder logisch. Wenn Sie Daten über ein externes Netzwerk übertragen, verschlüsseln Sie Protokollübertragungen auf allen externen Verbindungen mit einem verschlüsselten Tunnel, einem TLS-Wrapper oder mit einer ähnlichen Lösung.

Standard-Sicherheitseinstellungen

Bereich	Einstellung	Werkeinstellung
Kommunikationsproto-	Modbus TCP	Aktiviert
копе	BACnet/IP	Aktiviert
Konfiguration	Verwendung des Displays	Aktiviert

Display-Kennwörter

Das Gerät hat konfigurierbare Kennwörter für das Display. Wenn die werkseitigen Einstellungen der Kennwörter beibehalten werden, erleichtert das potenziellen Hackern den unbefugten Zugriff auf das Gerät. Es wird empfohlen, dass Sie die werkseitig eingestellten Kennwörter ändern.

Display-Kennwörter einrichten

Anweisungen zur Änderung des Standardkennworts finden Sie unter Bildschirmkennwörter einrichten, Seite 37.

HINWEIS

ZUGRIFFSVERLUST

Vermerken Sie die Benutzer- und Kennwort-Informationen für Ihr Messgerät an einem sicheren Ort.

Die Nichteinhaltung dieser Anweisungen kann zu Datenverlusten sowie zu einem Verlust des Zugriffs auf das Gerät führen.

Gerät härten

Empfehlungen zur Optimierung der Cybersicherheit in einer geschützten Umgebung:

- Härten Sie das Gerät gemäß den Richtlinien und Normen Ihres Unternehmens.
- Überprüfen Sie die Annahmen zu geschützten Umgebungen und berücksichtigen Sie dabei potenzielle Risiken und Risikominderungsstrategien. Einzelheiten hierzu finden Sie unter Defense-in-Depth-Produktsicherheit, Seite 40.
- Ändern Sie das Standardkennwort. Einzelheiten hierzu finden Sie unter Display-Kennwörter, Seite 42.
- Deaktivieren Sie das BACnet/IP-Kommunikationsprotokoll, wenn es nicht verwendet wird. Dadurch wird die Angriffsfläche verringert. Einzelheiten hierzu finden Sie unter Konfiguration der BACnet/IP-Einstellungen über das Display, Seite 52.

Kommunikationsprotokolle aktivieren/deaktivieren

Durch die Deaktivierung von unnötigen und nicht verwendeten Kommunikationsprotokollen wie BACnet/IP wird die Angriffsfläche verringert. Durch die Änderung der Port-Nummer-Standardwerte wird die Vorhersehbarkeit der Nutzung verringert.

Konfiguration der BACnet/IP-Einstellungen über das Display

Anweisungen zur Aktivierung/Deaktivierung der BACnet/IP-Konfiguration auf Ihrem Gerät über das Display finden Sie unter Konfiguration der BACnet/IP-Einstellungen über das Display, Seite 52.

Firmware-Aktualisierungen

Wenn die Geräte-Firmware aktualisiert wird, bleibt die Sicherheitskonfiguration bestehen, bis sie anderweitig geändert wird – einschließlich Benutzernamen und Kennwörter. Es wird empfohlen, die Sicherheitskonfiguration nach einer Aktualisierung zu überprüfen, um die Berechtigungen für neue oder geänderte Gerätefunktionen zu kontrollieren und sie gemäß den Richtlinien und Normen Ihres Unternehmens zu widerrufen oder zu übernehmen.

Weitere Informationen zu Firmware-Aktualisierungen finden Sie unter Firmware-Aktualisierungen, Seite 116.

Richtlinien für sichere Entsorgung

Verwenden Sie bei der Entsorgung eines Messgeräts die *Checkliste für sichere Entsorgung*, damit eine potenzielle Offenlegung von Daten verhindert wird.

Checkliste für sichere Entsorgung

- Aktivitäten aufzeichnen: Dokumentieren Sie Entsorgungsaktionen gemäß den Richtlinien und Normen Ihres Unternehmens, damit entsprechende Aufzeichnungen der Aktivitäten vorhanden sind.
- · Verwandte Regeln ausmustern und Datensätze bereinigen:
 - Führen Sie die vorgegebenen Aufgaben Ihres Unternehmens zur Ausmusterung und Bereinigung durch oder wenden Sie sich an Ihren Netzwerkadministrator.
 - Mustern Sie Netzwerk- und Sicherheitsregeln aus, z. B. eine Firewall-Regel, mit der die Firewall überwunden werden könnte.
 - Führen Sie Bereinigungsaufgaben mit einer Datensatznachverfolgung durch, um Datensätze aus verwandten Systemen, wie z. B. SNMP-Überwachungsservern, zu entfernen.
- Entsorgung und Wiederverwendung: Weitere Informationen hierzu finden Sie unter Entsorgung, Wiederverwendung, Recycling, Seite 44.

Entsorgung, Wiederverwendung, Recycling

Bevor Sie das Gerät aus seiner vorgesehenen Umgebung entfernen, befolgen Sie die *Richtlinien für sichere Entsorgung* in diesem Dokument.

Führen Sie die vorgegebenen Aufgaben Ihres Unternehmens zur Geräteentnahme durch oder wenden Sie sich an Ihren Netzwerkadministrator, um eine verantwortungsbewusste Entsorgungsmethode festzulegen.

Entsorgen Sie das Gerät gemäß den geltenden Rechtsvorschriften des jeweiligen Landes. Zu den Aufsichtsbehörden bzw. aufsichtsbehördlichen Regelungen zählen Folgende:

- Die US-amerikanische Umweltschutzbehörde (EPA) f
 ür Anweisungen f
 ür nachhaltigen Umgang mit Elektroger
 äten.
 - Die EPA stellt ein Electronic Product Environmental Assessment Tool (EPEAT) zur Verfügung, mit dem die Umwelteigenschaften von Elektrogeräten beurteilt werden können.
- Die europäische Richtlinie über Elektro- und Elektronik-Altgeräte (WEEE-Richtlinie) ist die Gemeinschaftsrichtlinie für Elektro- und Elektronikgeräte-Abfall.
- Die europäische Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe (RoHS) regelt die Verwendung von Gefahrstoffen in Elektro- und Elektronikgeräten.

HINWEIS

UNBEFUGTER ODER UNBEABSICHTIGTER ZUGRIFF AUF VERTRAULICHE DATEN

- Lagern Sie Geräte, die nicht im Einsatz sind, an einem Ort, der Zugangskontrollen unterliegt oder überwacht wird.
- Vernichten Sie Geräte, die außer Betrieb genommen werden.

Die Nichteinhaltung dieser Anweisungen kann zu einem unbefugten oder nicht beabsichtigten Zugriff auf sensible oder sichere Kundendaten führen.

Gerätentsorgung

Es wird empfohlen, dass das gesamte Gerät vernichtet wird. Durch die Vernichtung wird eine potenzielle Offenlegung der Daten auf dem Gerät verhindert, die zuvor nicht entfernt wurden.

Gerätewiederverwendung

Ist eine Wiederverwendung potenziell möglich, dann lagern Sie das Gerät an einem Ort, der Zugangskontrollen unterliegt oder überwacht wird.

Geräterecycling

Rufen Sie www.se.com auf und suchen Sie nach dem Produktumweltprofil für Ihren Messgerättyp, um Anweisungen zum Umgang mit Elektronik-Altgeräten abzurufen.

Kommunikationsschnittstelle

Empfohlene Netzwerkkommunikationskennzahlen

HINWEIS:

- Um eine unbeabsichtigte Funktion der Messgerät-MMS und der Kommunikationsschnittstellen zu verhindern, wird angeraten, das Senden nicht unterstützter Netzwerkpakete über einen längeren Zeitraum zu vermeiden. In solchen Fällen wird empfohlen, das Messgerät aus- und wieder einzuschalten, um es wieder in den Normalmodus zu versetzen.
- Um zu verhindern, dass unbeabsichtigter Datenverkehr das Messgerät erreicht, wird angeraten, eine Datenverkehrsfilterung auf Switch-Ebene durchzuführen. Wenn das Messgerät beispielsweise in einer IGMP-Umgebung mit einem Managed Switch angeschlossen ist, wird empfohlen, das IGMP-Snooping zu aktivieren, die VLAN-Schnittstelleneinstellungen zu konfigurieren und die Multicast-Filterung zu verwenden.

Serielle Kommunikationsschnittstelle

Das Messgerät unterstützt die serielle Kommunikation über den RS-485-Port.

In einem RS-485-Netzwerk gibt es ein Master-Gerät – normalerweise ein Ethernet-RS-485-Gateway. Dieses Gerät bietet die Voraussetzungen für die RS-485-Kommunikation mit mehreren Slave-Geräten (z. B. Messgeräten). Bei Anwendungen, für die nur ein eigens dafür bestimmter Computer für die Kommunikation mit den Slave-Geräten erforderlich ist, kann ein USB- zu RS485-Konverter als Anschluss zum Master-Gerät verwendet werden.

Über einen einzigen RS-485-Bus können bis zu 32 Geräte verbunden werden.

RS-485-Netzwerkkonfiguration

Nach dem Verdrahten der RS-485-Schnittstelle und dem Einschalten des Messgeräts muss die serielle Kommunikationsschnittstelle für die Kommunikation mit dem Messgerät konfiguriert werden.

Jedes Gerät an einem RS-485-Kommunikationsbus muss eine unverwechselbare Adresse haben, und alle angeschlossenen Geräte müssen auf das gleiche Protokoll, die gleiche Baudrate und die gleiche Parität (Datenformat) eingestellt sein.

HINWEIS: Zur Kommunikation mit dem Messgerät über ION Setup müssen Sie die serielle Sitegruppe und alle angeschlossenen Geräte im RS-485-Netz auf den gleichen Paritätswert einstellen.

Bei Messgeräten ohne Display müssen Sie erst jedes Gerät verdrahten und separat konfigurieren, bevor Sie diese Messgeräte an einen gemeinsamen RS-485-Bus anschließen.

RS-485-Schnittstelle einrichten

Das Messgerät enthält werkseitig konfigurierte Einstellungen für die serielle Kommunikation. Sie müssen diese Einstellungen möglicherweise ändern, bevor Sie das Messgerät am RS-485-Bus anschließen können.

Das Messgerät enthält die folgenden, werkseitig konfigurierten Voreinstellungen für die serielle Kommunikationsschnittstelle:

- Protokoll = Modbus RTU
- Adresse = 1
- Baudrate = 19200
- Parität = Gerade

Sie können einen Kommunikationskonverter (USB auf RS-485 oder RS-232 auf RS-485) bzw. ein Ethernet-Gateway-Gerät für den Anschluss des Messgeräts verwenden.

Einrichtung der seriellen Kommunikation über das Display

Auf dem Bildschirm zur Einrichtung der seriellen Schnittstelle können Sie die RS-485-Kommunikationsschnittstelle des Messgeräts so konfigurieren, dass Sie mit Hilfe von Software auf die Messgerätdaten zugreifen oder das Messgerät extern konfigurieren können.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Komm > Seriell.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf Edit. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf OK.
- 7. Zum Verlassen drücken Sie den Aufwärtspfeil. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

Parameter	Werte	Beschreibung
Protokoll	Modbus	Wählen Sie das Kommunikationsschnittstellenformat aus, das für die Datenübertragung verwendet werden soll. Das Protokoll muss für alle Geräte in einer Kommunikationsschleife gleich sein.
Adresse	1 bis 247	Stellen Sie die Adresse des jeweiligen Geräts ein. Die Adresse muss für jedes Gerät in einer Kommunikations-schleife unverwechselbar sein. Für das Jbus-Protokoll ist die Geräte-ID auf 255 einzustellen.
Baudrate	9600, 19200, 38400	Wählen Sie die Geschwindigkeit der Datenübertragung aus. Die Baudrate muss für alle Geräte in einer Kommunikationsschleife gleich sein.
Parität	Gerade, ungerade, keine	Wählen Sie Keine, wenn die Parität nicht verwendet wird. Die Paritätseinstellung muss für alle Geräte in einer Kommunikationsschleife gleich sein.

Ethernet-Kommunikationsschnittstelle

Das Messgerät verwendet die Protokolle Modbus TCP und BACnet/IP, um über seine Ethernet-Kommunikationsschnittstelle (sofern vorhanden) mit Datenübertragungsgeschwindigkeiten von bis zu 100 MBit/s zu kommunizieren.

Das Messgerät unterstützt maximal 128 parallele TCP/IP-Verbindungen.

Ethernet-Konfiguration

Um die Ethernet-Kommunikation zu nutzen, müssen Sie die IP-Adresse Ihres Geräts konfigurieren. Sie müssen auch die Subnet- und Gateway-Informationen konfigurieren, wenn es von Ihrem Netzwerk gefordert wird.

Sie müssen die Netzwerkinformationen für alle Ethernet-Server, die vom Gerät genutzt werden, eingeben.

HINWEIS: Kontaktieren Sie Ihren Netzwerk-Systemadministrator hinsichtlich Ihrer IP-Adresse und anderer Ethernet-Netzwerk-Konfigurationswerte.

Konfigurieren Sie die Ethernet-Einstellungen Ihres Geräts über das Display. Modifizieren Sie die Etherneteinstellungen Ihres Messgeräts auf die von Ihrem Netzwerk-Systemadministrator bereitgestellten Einstellungen, bevor Sie das Gerät mit Ihrem LAN verbinden.

Nachdem Sie den Ethernet-Port des Messgeräts konfiguriert und mit dem LAN verbunden haben, können Sie ION Setup verwenden, um alle anderen Einrichtungsparameter zu konfigurieren.

Ethernet-Schnittstelle einrichten

Das Messgerät enthält werkseitig konfigurierte Ethernet-Kommunikationseinstellungen.

Sie müssen die Standard-Ethernet-Einstellungen modifizieren, bevor Sie das Messgerät an Ihr lokales Netzwerk (LAN) anschließen.

Die Standard-Ethernet-Kommunikationseinstellungen sind:

- IP-Adresse = 169.254.0.10
- Subnetzmaske = 255.255.0.0
- Gateway = 0.0.0.0
- Gerätename = PM53-#xxxxxxx, wobei "xxxxxxxx" die werkseitig vergebene Messgerät-Seriennummer ist (mit führenden Nullen, wenn die Seriennummer weniger als 10 Zeichen umfasst)
- IP-Verfahren = Werkeinstellung

Einrichtung der Ethernet-Kommunikation über das Display

Auf dem Bildschirm zur Einrichtung der Ethernet-Kommunikation können Sie dem Messgerät eine unverwechselbare IP-Adresse zuweisen, so dass Sie mit Hilfe von Software auf die Messgerätdaten zugreifen oder das Messgerät extern über die Ethernet-Schnittstelle konfigurieren können.

Vor der Konfiguration der Ethernet-Parameter müssen Sie die IP-Adressdaten von Ihrem Netzwerkadministrator oder der IT-Abteilung erfragen.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Komm > Enet.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf Edit. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf OK.
- 7. Zum Verlassen drücken Sie den Aufwärtspfeil.

8. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

Parameter	Werte	Beschreibung
IP-Verfahren	Gespeichert, Werkeinstel- lung, DHCP, BOOTP	Damit wird das Netzwerkprotokoll des Geräts gesteuert (mit dem das Messgerät seine IP-Adresse abruft):
		Gespeichert: Verwendet den im Einrichtungsregister "IP-Adresse" programmierten statischen Wert.
		Standard: Verwendet 169.254 als die ersten beiden Werte der IP-Adresse, wandelt die letzten beiden Hexadezimalwerte der MAC-Adresse in einen Dezimalwert um und verwendet diesen als die letzten beiden Werte der IP-Adresse. Beispiel:
		MAC-Adresse = 00:80:67:82:B8:C8
		Werkeinstellung der IP-Adresse = 169.254.184.200
		DHCP: Dynamic Host Konfiguration Protokoll
		BOOTP: Bootstrap Protocol
IP-Adresse	Wenden Sie sich für die Parameterwerte an Ihren lokalen Netzwerkadmi- nistrator.	Die Internet-Protokoll-Adresse Ihres Geräts.
Subnetz	Wenden Sie sich für die Parameterwerte an Ihren lokalen Netzwerkadmi- nistrator.	Die Ethernet-IP-Subnetzadresse Ihres Netzwerks (Subnetzmaske).
Gateway	Wenden Sie sich für die Parameterwerte an Ihren lokalen Netzwerkadmi- nistrator.	Die Ethernet-IP-Gateway-Adresse Ihres Netzwerks.
Gerätebezeich- nung	Nicht zutreffend	Dieser Parameter dient als Referenzwert und ist schreibgeschützt.

BACnet/IP

Das BACnet/IP-Protokoll ermöglicht die Kommunikation zwischen den Komponenten eines Gebäudeautomatisierungssystems (z. B. HLK, Beleuchtung, Sicherheitsanlagen und zugehörige Geräte).

Das BACnet/IP-Protokoll definiert eine Reihe von Diensten, die für die Kommunikation zwischen Geräten verwendet werden, sowie die Objekte, auf die durch diese Dienste eingewirkt wird.

Begriff	Definition
APDU	Application Protocol Data Unit (Anwendungsprotokoll-Dateneinheit) – der Datenteil der BACnet-Meldung.
Bestätigte Meldung	Eine Meldung, auf die das Gerät eine Antwort erwartet.
COV, COV-Inkrement	Wertänderung – damit wird der Betrag festgelegt, um den sich der Wert ändern muss, damit das Messgerät eine Abonnementsbenachrichtigung sendet.
Gerät	Ein BACnet-Gerät ist ein Gerät, das für das Verstehen und die Nutzung des BACnet-Protokolls konzipiert ist (z. B. ein BACnet- fähiges Messgerät oder Softwareprogramm). Es enthält Informationen über das Gerät und die Gerätedaten in Objekten und Objekteigenschaften. Ihr Messgerät ist ein BACnet-Gerät.
Objekt	Stellt das Gerät und die Gerätedaten dar. Jedes Objekt hat einen Typ (z. B. Analogeingabe oder Binäreingabe) und eine Reihe von Eigenschaften.

Begriff	Definition	
Aktueller Wert	Der aktuelle Wert eines Objekts.	
Eigenschaft	Die kleinste Informationseinheit bei der BACnet-Kommunikation. Sie besteht aus einem Namen, dem Datentyp und einem Wert.	
Dienst	Meldungen von einem BACnet-Gerät zu einem anderen	
Abonnement	Eine Beziehung zwischen einem BACnet-Client und dem Messgerät, so dass bei Änderung der Eigenschaft "Aktueller Wert" eines Objekts im Messgerät eine Benachrichtigung an den Client gesendet wird.	
Abonnementsbenachrichti- gung	Die Nachricht, die das Messgerät sendet, um darauf hinzuweisen, dass ein Wertänderungsereignis (COV) aufgetreten ist.	
Nicht bestätigte Meldung	Eine Meldung, auf die das Gerät keine Antwort erwartet	
BACnet Broadcast Management Device (BBMD)	Ein BACnet/IP-Gerät (oder eine Softwareanwendung), das bzw. die in einem BACnet/IP-Subnetz angeordnet ist und das bzw. die BACnet-Broadcast-Meldungen von Geräten in seinem bzw. ihrem Subnetz an Peer-BBMDs und registrierte Foreign Devices in anderen Subnetzen weiterleitet.	
Foreign Device	Hierbei handelt es sich um ein BACnet/IP-Gerät (oder eine Softwareanwendung), das bzw. die in einem fernen IP-Subnetz angeordnet und bei einem BBMD registriert ist, um das Senden und Empfangen von Broadcast-Meldungen zu bzw. von Geräten zu ermöglichen, auf die das BBMD zugreifen kann.	

Unterstützte BACnet-Funktionen

Messgeräte des Typs PM5320, PM5340 und PM5341 unterstützen spezielle BACnet-Komponenten und -Standardobjekte über Ethernet. Die unterstützten BACnet-Funktionen sind in den entsprechenden Produkten ab Firmwareversion 2.00 verfügbar.

Die Unterstützung des BACnet/IP-Protokolls durch das Messgerät wurde von BACnet International zertifiziert. Rufen Sie www.se.com auf und suchen Sie nach Ihrem Messgerät-Modell, um auf die Konformitätserklärung des Herstellers (PICS – Protocol Implementation Conformance Statement) für Ihr Messgerät zuzugreifen.

Unterstützte BACnet-Komponenten

BACnet-Komponente	Beschreibung
Protokollversion	1
Protokollrevision	14
Standard-Geräteprofil (Anhang L)	BACnet Application Specific Controller (B-ASC)
BACnet-Interoperabilitätsbausteine (Anhang K)	 DS-RP-B (Data Sharing – Read Property – B) DS-RPM-B (Data Sharing – Read Property Multiple – B) DS-WP-B (Data Sharing – Write Property – B) DS-WPM-B (Data Sharing – Write Property Multiple – B) DS-COV-B (Data Sharing – COV – B) DM-DDB-B (Device Management – Dynamic Device Binding – B) DM-DOB-B (Device Management – Dynamic Object Binding – B) DM-DCC-B (Device Management – Device Communication Control – B)
BACnet/IP (Anhang J)	Internet-Protokoll für die BACnet-Kommunikation
Netzwerkoptionen (Datenverbindungsschicht)	UDP
ANSI-Zeichensatz	X3.4/UTF-8
Unterstützte Dienste	 subscribeCOV readProperty readPropertyMultiple

BACnet-Komponente	Beschreibung	
	 writeProperty writePropertyMultiple deviceCommunicationControl who-HAS who-Is I-Am I-Have Bestätigte COV-Benachrichtigung Unbestätigte COV-Benachrichtigung 	
Segmentierung	Das Messgerät unterstützt keine Segmentierung.	
Einbindung statischer Geräteadressen	Das Messgerät unterstützt keine Einbindung statischer Geräteadressen.	
Vernetzungsoptionen	Das Messgerät unterstützt die Registrierung als ein Foreign Device.	

Unterstützte Standardobjekttypen

HINWEIS: Mit dem BACnet-Protokoll können Sie die Eigenschaft "Objektfunktion außer Betrieb" (Out-of-service) eines Objekts auf "wahr" setzen und für Testzwecke einen Wert für diese Eigenschaft schreiben. In diesem Fall zeigt die BACnet-Software den Wert an, den Sie für das Objekt geschrieben haben, nicht den tatsächlichen Wert vom Messgerät und vom System, das von ihm überwacht wird. Stellen Sie unbedingt die Eigenschaft "Objektfunktion außer Betrieb" (Out-of-service) aller Objekte auf "unwahr", bevor Sie das Messgerät in Betrieb nehmen.

Objekttyp	Unterstützte optionale Eigenschaften	Unterstützte schreibbare Eigenschaften	Unterstützte beschränkt schreibbare Eigenschaften
Geräteobjekt	 Standort Beschreibung Local_Time Local_Date Active_COV_ Subscriptions Profile_Name 	 Object_Name Object_Identifier Location Beschreibung APDU_Timeout Number_Of_APDU_ Retries 	_
Analogeingabeobjekt	BeschreibungVerlässlichkeitCOV_Increment	Out_Of_Service COV_Increment	Present_Value
Binäreingabeobjekt	BeschreibungVerlässlichkeit	Out_Of_Service	Present_Value
Mehrstufiges Eingabeobjekt	BeschreibungVerlässlichkeitState_Text	Out_Of_Service	Present_Value

Implementierung der BACnet/IP-Kommunikation

Die BACnet-Implementierung des Messgeräts beinhaltet bestimmte Vorgänge und eine bestimmte Konfiguration.

Grundkonfiguration für die BACnet-Kommunikation

Vor der Kommunikation mit dem Messgerät über das BACnet-Protokoll müssen unbedingt die richtigen BACnet-Grundeinstellungen für Ihr Netzwerk konfiguriert werden. Die Geräte-ID muss im jeweiligen BACnet/IP-Netzwerk unverwechselbar sein.

COV-Abonnements

Das Messgerät unterstützt bis zu 20 COV-Abonnements (Wertänderungsabonnements). Sie können mit einer BACnet-kompatiblen Software COV-Abonnements zu folgenden Objekten hinzufügen: Analogeingabe, Binäreingabe und mehrstufige Eingabe.

Konfiguration der BACnet/IP-Einstellungen über das Display

Sofern die Konfiguration der BACnet/IP-Einstellungen notwendig ist, verwenden Sie dafür das Display des Messgeräts.

- 1. Navigieren Sie zu Wart > Einr.
- Geben Sie das Einrichtungskennwort (Voreinstellung ist "0") ein und drücken Sie auf **OK**.
- 3. Navigieren Sie zu Komm > BACnet.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.
- 5. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 6. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 7. Zum Verlassen drücken Sie den Aufwärtspfeil.

Verfügbare BACnet/IP-Grundeinstellungen (Display)

Parameter	Werte	Beschreibung
BACnet-Status	Aktiviert, Deaktiviert	Aktivierung bzw. Deaktivierung der BACnet/IP-Kommunikation mit dem Messgerät
Geräte-ID	1–4194302	Geben Sie die ID des Messgeräts in Ihrem BACnet-Netzwerk ein. Die ID muss im Netzwerk unverwechselbar sein.
UDP-Port	1024–65535	Geben Sie den Port ein, den das Messgerät für die BACnet/IP- Kommunikation nutzt. Werkseitig ist der Standard-BACnet/IP-Port (47808) eingestellt.

Verfügbare Foreign Device-Einstellungen (Display)

Parameter	Werte	Beschreibung
BBMD-Status	Aktiviert, Deaktiviert	Aktivieren bzw. deaktivieren Sie die Registrierung des Messgeräts als Foreign Device (FD).
BBMD-IP	Wenden Sie sich für die Parameterwerte an Ihren Iokalen Netzwerkadministrator.	Geben Sie die IP-Adresse des BACnet/IP Broadcast Management Device (BBMD) ein, sofern Sie ein BBMD in Ihrem Netzwerk verwenden.
BBMD-Port	1024–65535	Geben Sie die Port-Nummer ein, die für die Kommunikation mit dem BBMD genutzt wird. Werkseitig ist der Standard-BACnet/IP- Port (47808) eingestellt.
BBMD-TTL (s)	0–65535	Das ist die Zeit (in Sekunden), über die das BBMD einen Eintrag für dieses Gerät in seiner Foreign Device-Tabelle hält.

BACnet objects

Geräteobjekt

Das Messgerät hat ein Geräteobjekt (Device), welches das Messgerät für das BACnet-Netzwerk beschreibt.

Die folgende Tabelle enthält die Eigenschaften des Geräteobjekts sowie Hinweise, ob eine Eigenschaft schreibgeschützt ist oder nicht und ob der Wert der Eigenschaft im integrierten nichtflüchtigen Speicher des Messgeräts gespeichert wird.

Eigenschaft des Geräteobjekts	L/S	Gespei- chert	Mögliche Werte	Beschreibung
Object_Identifier	L/S	Y	Siehe Beschreibung	Das ist die unverwechselbare ID-Nummer des Messgeräts im Format <gerät, nr.="">.</gerät,>
				Das Messgerät wird werkseitig mit einer Geräte-ID ausgeliefert, die den letzten 6 Stellen der Seriennummer entspricht.
Object_Name	L/S	Y	Siehe Beschreibung	Ein konfigurierbarer Name für das Messgerät.
				Werkseitig wird das Messgerät mit dem Namen <modellbezeichnung>_ <seriennummer> (z. B. PM5320_ 000000000) ausgeliefert.</seriennummer></modellbezeichnung>
Object_Type	R	—	Gerät	Der Objekttyp für das Messgerät.
System_Status	R	—	Betriebsbereit	Der Wert dieser Eigenschaft ist immer "Operational".
Vendor_Name	R	—	Schneider Electric	Name des Messgerätherstellers
Vendor_Identifier	R	—	10	Die Kennung des BACnet-Anbieters für Schneider Electric.
Model_Name	R	_	Variiert	Gerätemodell (z. B. PM5320) und Seriennummer im Format <modellbezeichnung>_<seriennummer> (z. B. PM5320_000000000).</seriennummer></modellbezeichnung>
Firmware_Revision	R	_	Variiert	BACnet-Firmwareversion gespeichert im Format x.x.x (z. B. 1.9.0).
Application_Software_Version	R	—	Variiert	Messgerät-Firmwareversion gespeichert im Format x.x.x (z. B. 1.0.305).
Beschreibung	L/S	Y	Konfigurierbar	Optionale Beschreibung des Messgeräts – auf 64 Zeichen begrenzt.
Standort	L/S	Y	Konfigurierbar	Optionale Beschreibung des Messgerät- Einbauorts – auf 64 Zeichen begrenzt.
Protocol_Version	R	_	Variiert	BACnet-Protokollversion (z. B. Version 1)
Protocol_Revision	R	—	Variiert	BACnet-Protokollrevision (z. B. Revision 14)
Protocol_Services_Supported	R	_	0000 0100 0000 1011 1100 1000 0000 0000	Vom Messgerät unterstützte BACnet-Dienste: subscribeCOV, readProperty, readPropertyMultiple, writeProperty, writePropertyMultiple, deviceCommunicationControl, ReinitializeDevice, who-HAS, who-Is
Protocol_Object_Types_ Supported	R		1001 0000 1000 0100 0000 0000 0000 0000	Vom Messgerät unterstützte BACnet- Objekttypen: Analogeingabe, Binäreingabe, mehrstufige Eingabe, Gerät.
Object_list	R	—	Siehe Beschreibung	Liste der Objekte im Messgerät.
Max_APDU_Length_Accepted	R	_	1476	Maximale Paketgröße (bzw. Anwendungsprotokoll-Dateneinheit), die das Messgerät verarbeiten kann – in Byte.
Segmentation_Supported	R	—	0x03	Das Messgerät unterstützt keine Segmentierung.
Local_Date	R	—	Variiert	Aktuelles Datum im Messgerät
				HINWEIS: Stellen Sie das Datum im Messgerät über das Display oder über ION Setup ein.
Local_Time	R	—	Variiert	Aktuelle Uhrzeit im Messgerät
				HINWEIS: Stellen Sie die Uhrzeit im Messgerät über das Display oder über ION Setup ein.

Eigenschaft des Geräteobjekts	L/S	Gespei- chert	Mögliche Werte	Beschreibung
APDU_Timeout	L/S	Y	1000–30000	Der Zeitraum (in Millisekunden), nach dem das Messgerät versucht, eine bestätigte Nachricht, die nicht beantwortet wurde, erneut zu senden.
Number_Of_APDU_Retries	L/S	Y	1–10	Die Anzahl der Versuche, die das Messgerät unternimmt, um eine unbeantwortete bestätigte Anforderung erneut zu senden.
Device_Address_Binding	R	_	_	Die Geräteadressen-Verknüpfungstabelle ist stets leer, weil das Messgerät den Dienst "who-Is" nicht einleitet.
Database_Revision	R	Y	Variiert	Eine Zahl, die erhöht wird, wenn sich die Objektdatenbank im Messgerät ändert (zum Beispiel wenn ein Objekt erstellt oder gelöscht wird oder wenn sich die ID eines Objekts ändert).
Active_COV_Subscriptions	R	_	Variiert	Liste der COV-Abonnements (COV = Change of Value – Wertänderung), die aktuell im Messgerät aktiv sind.
Profile_Name	R	_	Variiert	Gerätekennung mit dem Hersteller, der Baureihe und dem speziellen Modell des Messgeräts (z. B. 10-PM5000-PM5320).

Analogeingabeobjekte

Das Messgerät hat eine Reihe von Analogeingabeobjekten, die Messwerte und Informationen über die Einstellungen des Messgeräts liefern.

In den folgenden Tabellen sind die Analogeingabeobjekte zusammen mit den Einheiten und dem Vorgabe-COV-Wert (sofern zutreffend) für jedes Objekt aufgelistet.

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
3000	Current - Ph A	А	50	Strom, Phase 1
3002	Current - Ph B	А	50	Strom, Phase 2
3004	Current - Ph C	А	50	Strom, Phase 3
3006	Current - Neutral	А	50	Neutralleiterstrom
3008	Current - Ground	А	50	Erdleiterstrom
3010	Current - Avg	А	50	Durchschnittsstrom
3012	Current Unb - Ph A	%	20	Strom, Unsymmetrie, Phase 1
3014	Current Unb - Ph B	%	20	Strom, Unsymmetrie, Phase 2
3016	Current Unb - Ph C	%	20	Strom, Unsymmetrie, Phase 3
3018	Current Unb - Worst	%	20	Stromunsymmetrie schlechteste Phase
3020	Voltage - A-B	V	10	Spannung A-B
3022	Voltage - B-C	V	10	Spannung B-C
3024	Voltage - C-A	V	10	Spannung C-A
3026	Voltage - Avg L-L	V	10	Spannung L-L Avg
3028	Voltage - A-N	V	10	Spannung A-N
3030	Voltage - B-N	V	10	Spannung B-N
3032	Voltage - C-N	V	10	Spannung C-N
3036	Voltage - Avg L-N	V	10	Spannung L-N Avg

Echtzeit-Messwerte

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
3038	Voltage Unb - A-B	%	20	Spannungsunsymmetrie 1-2
3040	Voltage Unb - B-C	%	20	Spannungsunsymmetrie 2-3
3042	Voltage Unb - C-A	%	20	Spannungsunsymmetrie 3-1
3044	Voltage Unb - Worst L-L	%	20	Spannungsunsymmetrie L-L schlechteste Phase
3046	Voltage Unb - A-N	%	20	Spannungsunsymmetrie 1-N
3048	Voltage Unb - B-N	%	20	Spannungsunsymmetrie 2-N
3050	Voltage Unb - C-N	%	20	Spannungsunsymmetrie 3-N
3052	Voltage Unb - Worst L-N	%	20	Spannungsunsymmetrie L-N schlechteste Phase
3110	Frequency	Hz	10	Frequenz

Leistung und Leistungsfaktor

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
3054	Active Power - Ph A	kW	10	Wirkleistung, Phase 1
3056	Active Power - Ph B	kW	10	Wirkleistung, Phase 2
3058	Active Power - Ph C	kW	10	Wirkleistung, Phase 3
3060	Active Power - Total	kW	10	Gesamtwirkleistung
3062	Reactive Power - Ph A	kVAR	10	Blindleistung, Phase 1
3064	Reactive Power - Ph B	kVAR	10	Blindleistung, Phase 2
3066	Reactive Power - Ph C	kVAR	10	Blindleistung, Phase 3
3068	Reactive Power - Total	kVAR	10	Gesamtblindleistung
3070	Apparent Power - Ph A	kVA	10	Scheinleistung, Phase 1
3072	Apparent Power - Ph B	kVA	10	Scheinleistung, Phase 2
3074	Apparent Power - Ph C	kVA	10	Scheinleistung, Phase 3
3076	Apparent Power - Total	kVA	10	Gesamtscheinleistung
3078	Power Factor - Ph A	—	0,2	Leistungsfaktor, Phase 1
3080	Power Factor - Ph B	—	0,2	Leistungsfaktor, Phase 2
3082	Power Factor - Ph C	-	0,2	Leistungsfaktor, Phase 3
3084	Power Factor - Total	—	0,2	Gesamtleistungsfaktor

Messwerte für Energie und Energie nach Tarif

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
2700	Active Energy Delvd	kWh	100	Gelieferte Wirkenergie
2702	Active Energy Rcvd	kWh	100	Bezogene Wirkenergie
2704	Active Energy Delvd + Rcvd	kWh	100	Wirkenergie geliefert + bezogen
2706	Active Energy Delvd - Rcvd	kWh	100	Wirkenergie geliefert – bezogen
2708	Reactive Energy Delvd	kVARh	100	Gelieferte Blindenergie
2710	Reactive Energy Rcvd	kVARh	100	Bezogene Blindenergie
2712	Reactive Energy Delvd + Rcvd	kVARh	100	Blindenergie geliefert + bezogen
2714	Reactive Energy Delvd - Rcvd	kVARh	100	Blindenergie geliefert – bezogen
2716	Apparent Energy Delvd	kVAh	100	Gelieferte Scheinenergie

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
2718	Apparent Energy Rcvd	kVAh	100	Bezogene Scheinenergie
2720	Apparent Energy Delvd + Rcvd	kVAh	100	Scheinenergie geliefert + bezogen
2722	Apparent Energy Delvd - Rcvd	kVAh	100	Scheinenergie geliefert – bezogen
4191	Applicable Tariff Energy Rate	—	1	Bezeichnet den aktiven Tarif:
				0 = Mehrfachtariffunktion deaktiviert
				1 = Tarif 1 aktiv
				2 = Tarif 2 aktiv
				3 = Tarif 3 aktiv
				4 = Tarif 4 aktiv
4800	Active Energy Delvd (Tariff 1)	kWh	100	Tarif 1, bezogene Wirkenergie
4802	Active Energy Delvd (Tariff 2)	kWh	100	Tarif 2, bezogene Wirkenergie
4804	Active Energy Delvd (Tariff 3)	kWh	100	Tarif 3, bezogene Wirkenergie
4806	Active Energy Delvd (Tariff 4)	kWh	100	Tarif 4, bezogene Wirkenergie

Leistungsmittelwert

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
3764	Dmd - Active Power Last	kW	10	Letzter Mittelwert der Wirkleistung
3766	Dmd - Active Power Present	kW	10	Aktueller Mittelwert der Wirkleistung
3768	Dmd - Active Power Pred	kW	10	Geschätzter Mittelwert der Wirkleistung
3770	Dmd - Active Power Peak	kW	10	Spitzenmittelwert der Wirkleistung
3780	Dmd - Reactive Power Last	kVAR	10	Letzter Mittelwert der Blindleistung
3782	Dmd - Reactive Power Present	kVAR	10	Aktueller Mittelwert der Blindleistung
3784	Dmd - Reactive Power Pred	kVAR	10	Geschätzter Mittelwert der Blindleistung
3786	Dmd - Reactive Power Peak	kVAR	10	Spitzenmittelwert der Blindleistung
3796	Dmd - Apparent Power Last	kVA	10	Letzter Mittelwert der Scheinleistung
3798	Dmd - Apparent Power Present	kVA	10	Aktueller Mittelwert der Scheinleistung
3800	Dmd - Apparent Power Pred	kVA	10	Geschätzter Mittelwert der Scheinleistung
3802	Dmd - Apparent Power Peak	kVA	10	Spitzenmittelwert der Scheinleistung

Strommittelwert

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
3876	Dmd - Average Current Last	A	10	Letzter Mittelwert des Durchschnittsstroms
3878	Dmd - Avg Current Present	A	10	Aktueller Mittelwert des Durchschnittsstroms
3880	Dmd - Average Current Pred	A	10	Geschätzter Mittelwert des Durchschnittsstroms
3882	Dmd - Average Current Peak	A	10	Spitzenmittelwert des Durchschnittsstroms

Leistungsqualität

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
21300	THD Current - Ph A	%	20	THD Strom A
21302	THD Current - Ph B	%	20	THD Strom B
21304	THD Current - Ph C	%	20	THD Strom C
21306	THD Current - Ph N	%	20	THD Strom N
21308	THD Current - Ph G	%	20	THD Strom G
21310	thd Current - Ph A	%	20	THD Strom A
21312	thd Current - Ph B	%	20	THD Strom B
21314	thd Current - Ph C	%	20	THD Strom C
21316	thd Current - Ph N	%	20	THD Strom N
21318	thd Current - Ph G	%	20	THD Strom G
21320	Total Dmd Distortion	%	20	Gesamte Mittelwertverzerrung
21322	THD Voltage - A-B	%	20	Klirrfaktor (THD), Spannung 1-2
21324	THD Voltage - B-C	%	20	Klirrfaktor (THD), Spannung 2-3
21326	THD Voltage - C-A	%	20	Klirrfaktor (THD), Spannung 3-1
21328	THD Voltage - Avg L-L	%	20	Klirrfaktor Spannung L-L
21330	THD Voltage - A-N	%	20	Klirrfaktor (THD), Spannung 1-N
21332	THD Voltage - B–N	%	20	Klirrfaktor (THD), Spannung 2-N
21334	THD Voltage - C-N	%	20	Klirrfaktor (THD), Spannung 3-N
21338	THD Voltage - Avg L-N	%	20	Klirrfaktor (THD), Spannung L-N
21340	thd Voltage - A-B	%	20	thd, Spannung 1-2
21342	thd Voltage - B-C	%	20	thd, Spannung 2-3
21344	thd Voltage - C-A	%	20	thd, Spannung 3-1
21346	thd Voltage - Avg L-L	%	20	thd Spannung L-L
21348	thd Voltage - A-N	%	20	thd, Spannung 1-N
21350	thd Voltage - B-N	%	20	thd, Spannung 2-N
21352	thd Voltage - C-N	%	20	thd, Spannung 3-N
21356	thd Voltage - Avg L-N	%	20	thd, Spannung L-N

Messgerätinformationen

Die folgende Liste enthält Analogeingabeobjekte, die Informationen über das Messgerät und seine Konfiguration bereitstellen.

HINWEIS: Auf die Konfigurationsdaten des Messgeräts kann über die BACnet-Kommunikationsschnittstelle zugegriffen werden. Allerdings müssen Sie die Messgerät-Einstellungen über das Display oder über ION Setup konfigurieren.

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
2000	Time since last meter power up	Sekunden	604800	Zeit, die seit der letzten Einschaltung des Messgeräts vergangen ist
2004	Meter operation timer	Sekunden	604800	Gesamtbetriebszeit des Messgeräts
2014	Number of phases	_	1	Anzahl der Phasen 1, 3
2015	Number of wires	_	1	Anzahl der Leiter

Objekt-ID	Objektbezeichnung	Einheiten	Vorgabe-COV	Beschreibung
				2, 3, 4
2017	Nominal frequency	Hz	1	Nennfrequenz
				50, 60
2025	Number of VTs	—	1	Anzahl Spannungswandler
				0, 2, 3
2026	VT primary	V	1	SPW primär
2028	VT secondary	V	1	SPW sekundär
2029	Number of CTs	—	1	Anzahl Stromwandler
				1, 2, 3
2030	CT primary	А	1	STW primär
2031	CT secondary	A	1	STW sekundär

Binäreingabeobjekte

Das Messgerät weist eine Reihe von Binäreingabeobjekten auf, die Statusinformationen von den Messgerät-E/As bereitstellen.

Die folgende Tabelle enthält die Binäreingabeobjekte (BI-Objekte), die im Messgerät verfügbar sind.

Objekt-ID	Objektbezeichnung	Beschreibung
38416, 38417	Digitaleingang 1 Digitaleingang 2	Status der Digitaleingänge 1 und 2: 0 = Ein 1 = Aus HINWEIS: Diese Informationen gelten nur, wenn der Digitaleingang als ein Statuseingang konfiguriert ist.
38448, 38449	Digitaler Ausgang 1 Digitalausgang 2	Status der Digitalausgänge: 0 = Ein 1 = Aus

Mehrstufige Eingabeobjekte

Das Messgerät hat eine Reihe von mehrstufigen Eingabeobjekten, die Informationen über die Ein- und Ausgänge des Messgeräts sowie die Stromnetzeinstellungen liefern.

Mehrstufige Eingabeobjekte zur Messgerätkonfiguration

Objekt-ID	Objektbezeichnung	Objektbezeichnung/-beschreibung
2016	Systemtyp	Systemtypkonfiguration:
		0 = Einphasig, 2-Leiter-System, L-N
		1 = Einphasig, 2-Leiter-System, L-L
		2 = Einphasig, 3-Leiter-System, L-L, mit N
		3 = Dreiphasig, 3-Leiter-System, Dreiecksschaltung, nicht geerdet
		4 = Dreiphasig, 3-Leiter-System, Dreiecksschaltung, starr geerdet
		5 = Dreiphasig, 3-Leiter-System, Sternschaltung, nicht geerdet
		6 = Dreiphasig, 3-Leiter-System, Sternschaltung, geerdet
		7 = Dreiphasig, 3-Leiter-System, Sternschaltung, widerstandsgeerdet
		8 = Dreiphasig, 4-Leiter-System, offene Dreiecksschaltung, mit Mittelabgriff
		9 = Dreiphasig, 4-Leiter-System, Dreiecksschaltung, mit Mittelabgriff
		10 = Dreiphasig, 4-Leiter-System, Sternschaltung, nicht geerdet
		11 = Dreiphasig, 4-Leiter-System, Sternschaltung, geerdet
		12 = Dreiphasig, 4-Leiter-System, Sternschaltung, widerstandsgeerdet
2036	SPW-Anschlussart	SPW-Anschlussart:
		0 = Direktanschluss
		1 = Dreiecksschaltung (2 SPWs)
		2 = Sternschaltung (3 SPWs)
		3 = L-N (1 SPW)
		4 = L-L (1 SPW)
		5 = L-L mit N (2 SPWs)
3701	Mittelwertmethode – Leistung	Leistungsmittelwertmethode:
		0 = Thermischer Mittelwert
		1 = Zeitlich festgelegter Gleitblock
		2 = Zeitlich festgelegter Intervallblock
		3 = Zeitlich festgelegter Rollblock
		4 = Eingangssynchronisierter Block
		5 = Eingangssynchronisierter Rollblock
		6 = Befehlssynchronisierter Block
		7 = Befehlssynchronisierter Rollblock
		8 = Uhrsynchronisierter Block
		9 = Uhrsynchronisierter Rollblock

Objekt-ID	Objektbezeichnung	Objektbezeichnung/-beschreibung
3711	Mittelwertmethode – Strom	Strommittelwertmethode:
		0 = Thermischer Mittelwert
		1 = Zeitlich festgelegter Gleitblock
		2 = Zeitlich festgelegter Intervallblock
		3 = Zeitlich festgelegter Rollblock
		4 = Eingangssynchronisierter Block
		5 = Eingangssynchronisierter Rollblock
		6 = Befehlssynchronisierter Block
		7 = Befehlssynchronisierter Rollblock
		8 = Uhrsynchronisierter Block
		9 = Uhrsynchronisierter Rollblock
3721	Mittelwertmethode – Eingangsimpulsmessung	Eingangsimpulsmittelwertmethode:
		0 = Thermischer Mittelwert
		1 = Zeitlich festgelegter Gleitblock
		2 = Zeitlich festgelegter Intervallblock
		3 = Zeitlich festgelegter Rollblock
		4 = Eingangssynchronisierter Block
		5 = Eingangssynchronisierter Rollblock
		6 = Befehlssynchronisierter Block
		7 = Befehlssynchronisierter Rollblock
		8 = Uhrsynchronisierter Block
		9 = Uhrsynchronisierter Rollblock

Mehrstufige Eingabeobjekte zur E/A-Konfiguration

Die folgende Tabelle enthält die mehrstufigen Eingabeobjekte, die Informationen über die E/A-Konfiguration des Messgeräts liefern.

Objekt-ID	Objektbezeichnung	Beschreibung
7274, 7298	Modus Digitaleingang 1	Steuerungsmodus der Digitaleingänge
	Modus Digitaleingang 2	0 = Normal (Alarm)
		1 = Mittelwertintervall-Synchronisierungsimpuls
		2 = Mehrfachtarif-Steuerung
9673, 9681	Modus Digitalausgang 1	Steuerungsmodus der Digitalausgänge 1 und 2
	Modus Digitalausgang 2	0 = Extern
		1 = MW-Synchr.
		2 = Alarm
		3 = Energie

Protokollierung

Datenprotokoll

Das Messgerät hat ein Alarmprotokoll und führt für ausgewählte Werte eine Datenprotokollierung durch.

Die Protokolle werden im nichtflüchtigen Speicher des Messgeräts gespeichert. Sie werden als "Onboard-Protokolle" bezeichnet. Die Datenprotokolle sind werkseitig deaktiviert.

Datenprotokoll einrichten

Sie können die Elemente für die Aufzeichnung im Datenprotokoll auswählen. Außerdem können Sie die Häufigkeit (Protokollierungsintervall) festlegen, mit der diese Werte aktualisiert werden sollen.

Verwenden Sie ION Setup für die Konfiguration der Datenprotokollierung.

HINWEIS

DATENVERLUST

Speichern Sie die Inhalte des Datenprotokolls, bevor Sie es konfigurieren.

Die Nichteinhaltung dieser Anweisungen kann zu Datenverlust führen.

- 1. Starten Sie ION Setup und öffnen Sie Ihr Messgerät im Einrichtungsmodus (View > Setup Screens). Lesen Sie die ION Setup-Hilfe für Anweisungen.
- 2. Doppelklicken Sie auf Data Log #1.
- 3. Richten Sie die Häufigkeit der Protokollierung und die zu protokollierenden Messwerte bzw. Daten ein.
- 4. Klicken Sie auf **Send**, um die Änderungen im Messgerät zu speichern.

Parameter	Werte	Beschreibung
Status	Enable, Disable	Stellen Sie diesen Parameter auf Aktivierung bzw. Deaktivierung der Datenprotokollierung im Messgerät ein.
Interval	15 minutes, 30 minutes, 60 minutes	Wählen Sie einen Zeitwert für die Einstellung des Protokollierungsintervalls aus.
Channels	Die für die Protokollierung verfügbaren Elemente hängen vom Messgerättyp ab.	Wählen Sie aus der Spalte "Available" ein aufzuzeichnendes Element aus und klicken Sie auf die Schaltfläche mit dem doppelten Rechtspfeil, um das Element in die Spalte "Selected" zu verschieben. Um ein Element zu entfernen, wählen Sie es aus der Spalte "Selected" aus, und klicken Sie auf die Schaltfläche mit dem doppelten Linkspfeil.

Datenprotokollinhalte speichern mit ION Setup

Sie können die Inhalte des Datenprotokolls mit Hilfe von ION Setup speichern.

- Starten Sie ION Setup und öffnen Sie Ihr Messgerät im Datenmodus (View > Data Screens). Anweisungen hierzu finden Sie in der ION Setup-Hilfe.
- 2. Doppelklicken Sie auf Data Log #1, um die Aufzeichnungen abzurufen.
- 3. Rechtsklicken Sie nach dem Hochladen der Datensätze auf eine beliebige Stelle in der Anzeige und wählen Sie **Export CSV** aus dem Popupmenü aus, um das gesamte Protokoll zu exportieren.

HINWEIS: Um nur ausgewählte Datensätze des Protokolls zu exportieren, klicken Sie auf den ersten zu exportierenden Datensatz, halten die Umschalttaste gedrückt und klicken dann auf den letzten zu exportierenden Datensatz. Wählen Sie anschließend **Export CSV** aus dem Popupmenü aus.

 Navigieren Sie zu dem Ordner, in dem die Datenprotokolldatei gespeichert werden soll, und klicken Sie auf Save.

Alarmprotokoll

Das Messgerät kann das Auftreten jedes Alarmzustands protokollieren.

Wird ein Alarm ausgelöst, so wird er im Alarmprotokoll erfasst. Das Alarmprotokoll im Messgerät speichert den Alarmauslöse- und -abfallpunkt zusammen mit Datum und Uhrzeit der Alarme.

Alarmprotokoll speichern

Das Leistungs- und Energiemessgerät speichert Alarmprotokolldaten im nichtflüchtigen Speicher.

Die Größe eines Alarmprotokolls ist auf 40 Datensätze begrenzt.

Speicherzuordnung für Protokolldateien

Jede Datei im Messgerät hat eine maximale Speichergröße.

Die verschiedenen Protokolle haben keinen gemeinsamen Speicher. Daher können in einem Protokoll nicht mehr Werte gespeichert werden, wenn in einem anderen Protokoll die Anzahl der gespeicherten Werte reduziert wird.

Protokolltyp	Maximale Anzahl gespeicherter Datensätze	Speicher (Byte)
Alarmprotokoll	40	2.200
Datenprotokoll	5760	256.000

Ein-/Ausgänge

Verfügbare E/A-Schnittstellen

Das Messgerät ist mit Statuseingängen, Digitalausgängen und Relaisausgängen ausgestattet.

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENÜBERSCHLAGS

- Tragen Sie geeignete persönliche Schutzausrüstung (PSA) und befolgen Sie sichere Arbeitsweisen für die Ausführung von Elektroarbeiten. Beachten Sie die Normen NFPA 70E, CSA Z462 sowie sonstige örtliche Standards.
- Schalten Sie vor Arbeiten an oder in der Anlage, in der das Gerät installiert ist, die gesamte Stromversorgung des Geräts bzw. der Anlage ab.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich ausgeschaltet ist.
- Gehen Sie davon aus, dass Kommunikations- und E/A-Leitungen gefährliche Spannungen führen, solange nichts anderes festgestellt wurde.
- Überschreiten Sie die maximalen Grenzwerte dieses Geräts nicht.
- Verwenden Sie dieses Gerät nicht für kritische Steuerungs- oder Schutzfunktionen für Menschen, Tiere oder Sachanlagen.
- Die Daten des Messgeräts dürfen nicht für die Überprüfung des stromlosen Zustands verwendet werden
- Bringen Sie alle Vorrichtungen, Türen und Abdeckungen wieder an, bevor Sie das Gerät einschalten.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Nach der Verdrahtung der E/A-Schnittstellen des Messgeräts können Sie diese Schnittstellen so konfigurieren, dass das Messgerät für E/A-Funktionen verwendet werden kann.

Modelle	Statuseingänge ¹	Digitalausgänge ²	Relaisausgänge
PM5310	2 (S1+, S2+)	2 (D1+, D2+)	—
PM5320	2 (S1+, S2+)	2 (D1+, D2+)	—
PM5330	2 (S1+, S2+)	2 (D1+, D2+)	2 (Relais 1, Relais 2)
PM5331			
PM5340			
PM5341			

¹Für die Statuseingänge des Messgeräts ist eine externe Spannungsquelle zur Erkennung des Einbzw. Aus-Zustands des jeweiligen Statuseingangs erforderlich. Das Messgerät erkennt einen EIN-Zustand, wenn die externe Spannung, die am Statuseingang anliegt, innerhalb seines Betriebsbereiches liegt. Die externe Spannung kann entweder über den Frittspannungsausgang des Messgeräts oder von einer messgerätexternen Spannungsquelle mit bis zu 36 V DC bezogen werden.

²Die Digitalausgänge sind für Spannungen unter 40 V DC ausgelegt. Für Anwendungen mit höherer Spannung ist ein externes Relais im Schaltstromkreis zu verwenden.

Relaisausgang-Anschlüsse

Statuseingangs-/Digitalausgangsanschlüsse

Anwendungen für Statuseingänge

Statuseingänge werden normalerweise für die Überwachung des Status von externen Kontakten oder Leistungsschaltern verwendet.

Betrachtungen zur Statuseingangsverdrahtung

Für die Statuseingänge des Messgeräts ist eine externe Spannungsquelle zur Erkennung des Ein- bzw. Aus-Zustands des jeweiligen Statuseingangs erforderlich.

Das Messgerät erkennt einen EIN-Zustand, wenn die externe Spannung, die am Statuseingang anliegt, innerhalb seines Betriebsbereiches liegt. Die externe Spannung kann entweder über den Frittspannungsausgang des Messgeräts oder von einer messgerätexternen Spannungsquelle mit bis zu 36 V DC bezogen werden.

Konfiguration der Statuseingänge über das Display

Die Statuseingänge (S1 und S2) können über das Display konfiguriert werden.

HINWEIS: Für die Konfiguration der Statuseingänge wird die Verwendung von ION Setup empfohlen, da Einrichtungsparameter, die eine Texteingabe erfordern, nur mit ION Setup geändert werden können.

1. Navigieren Sie zu Wart > Einr..

- 2. Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie **OK**.
- 3. Navigieren Sie zu E/A > SEing.
- 4. Verschieben Sie den Cursor, so dass er auf den einzurichtenden Statuseingang zeigt, und drücken Sie auf **Bearb**.
- 5. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.

HINWEIS: Wird **Bearb** nicht angezeigt, ist der Parameter entweder schreibgeschützt oder er kann nur mit Hilfe von Software geändert werden.

- 6. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 7. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 8. Zum Verlassen drücken Sie den Aufwärtspfeil. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

Parameter	Werte	Beschreibung
Bezeichnung	_	Diese Bezeichnung kann nur mit Hilfe von Software geändert werden. Verwenden Sie dieses Feld, um den Statuseingängen (S1 und S2) Namen zuzuweisen.
Entprellzeit (ms)	0 bis 1000	Das ist die Verzögerungszeit zur Kompensierung der mechanischen Kontaktprellung. Stellen Sie in diesem Feld ein, wie lange (in ms) das externe Signal in einem bestimmten Zustand verbleiben muss, bevor dies als gültige Statusänderung angesehen wird.
Steuerungsmodus	Normal	In diesem Feld wird angezeigt, wie der Statuseingang funktioniert: Normal: Der Statuseingang ist mit keiner anderen Messgerätfunktion verknüpft. Das Messgerät zählt und protokolliert die Anzahl der empfangenen Impulse normal.

Konfiguration der Statuseingänge mit ION Setup

Die Statuseingänge (S1 und S2) können über ION Setup konfiguriert werden.

- 1. Starten Sie ION Setup.
- 2. Stellen Sie eine Verbindung zu Ihrem Messgerät her.
- 3. Navigieren Sie zu I/O configuration > I/O Setup.
- 4. Wählen Sie einen zu konfigurierenden Statuseingang aus und klicken Sie auf **Edit**.

Der Einrichtungsbildschirm für diesen Statuseingang wird angezeigt.

- 5. Geben Sie unter **Label** einen beschreibenden Namen für den Statuseingang ein.
- 6. Konfigurieren Sie die anderen Einrichtungsparameter nach Bedarf.

7. Klicken Sie auf Send, um Ihre Änderungen zu speichern.

Über ION Setup verfügbare Einrichtungsparameter für Statuseingänge

Parameter	Werte	Beschreibung
Bezeichnung	_	Verwenden Sie dieses Feld, um die werkseitige Bezeichnung zu ändern und dem Statuseingang einen beschreibenden Namen zuzuweisen.
Control Mode	Normal, Demand Sync, Input Metering	In diesem Feld wird angezeigt, wie der Statuseingang funktioniert: Normal: Der Statuseingang ist mit keiner anderen Messgerätfunktion
		verknüpft. Das Messgerät zählt und protokolliert die Anzahl der empfangenen Impulse normal.
		 Demand Sync: Der Statuseingang ist mit einer der Mittelwert- Eingangssynchronisierungsfunktionen verknüpft. Das Messgerät nutzt den empfangenen Impuls zur Synchronisierung seines Mittelwertintervalls mit der externen Quelle.
		 Input Metering: Der Statuseingang ist mit einem der Eingangsimpulsmesskanäle verknüpft. Das Messgerät zählt und protokolliert die Anzahl der empfangenen Impulse sowie die entsprechenden, zu den Impulsen gehörenden Verbrauchsdaten.
Debounce	0 bis 9999	Das ist die Verzögerungszeit zur Kompensierung der mechanischen Kontaktprellung. Stellen Sie in diesem Feld ein, wie lange (in ms) das externe Signal in einem bestimmten Zustand verbleiben muss, bevor dies als gültige Statusänderung angesehen wird.
Associations	_	In diesem Feld werden zusätzliche Informationen angezeigt, wenn der Statuseingang bereits mit einer anderen Messgerätfunktion verknüpft ist.

Digitalausgangsanwendungen

Digitalausgänge werden normalerweise für Schaltanwendungen, z.B. für die Bereitstellung von Ein-/Aus-Signalen zur Schaltung von Kondensatorbatterien, Generatoren und anderen externen Geräten und Anlagen, verwendet.

Außerdem können die Digitalausgänge in Anwendungen zur Mittelwertsynchronisierung verwendet werden, bei denen das Messgerät Impulssignale für den Eingang eines anderen Messgeräts bereitstellt, um das Mittelwertintervall zu steuern. Ein Digitalausgang kann auch in Energieimpulsanwendungen genutzt werden, bei denen ein Empfängergerät den Energieverbrauch durch Zählung der kWh-Impulse bestimmt, die vom Digitalausgang des Messgeräts kommen. Die Digitalausgänge des Messgeräts wurden intern konzipiert. Es werden Halbleitergeräte mit einer Open-Collector-Konfiguration verwendet. Diese Ausgänge müssen für eine korrekte Funktion mit einem Strombegrenzer an die angegebene Spannungsversorgung angeschlossen werden. Weitere

Informationen hierzu finden Sie im nachstehenden Beispiel einer Digitalausgangsanwendung.

Beispiel einer Digitalausgangsanwendung

Sie können einen der Digitalausgänge Ihres Messgeräts mit einem Relais verbinden, das einen Generator einschaltet, und den anderen Digitalausgang so konfigurieren, dass er einen Mittelwert-Synchronisierungsimpuls zu anderen Messgeräten sendet.

Im folgenden Beispiel steuert und bestimmt das erste Messgerät (Messgerät 1) das Mittelwertintervall (900 s) der anderen Messgeräte (Messgerät 2, Messgerät 3 und Messgerät 4). Dies geschieht mit Hilfe des Ausgangsimpulses, der am Ende des Mittelwertintervalls des ersten Messgeräts auftritt.

Konfiguration der Digitalausgänge über das Display

Sie können das Display für die Konfiguration der Digitalausgänge verwenden.

HINWEIS: Für die Konfiguration der Digitalausgänge wird die Verwendung von ION Setup empfohlen, da Einrichtungsparameter, die eine Texteingabe erfordern, nur mit Hilfe von Software geändert werden können.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu E/A > DAusg.
- 4. Verschieben Sie den Cursor, so dass er auf den einzurichtenden Digitalausgang zeigt, und drücken Sie auf **Bearb**.
- 5. Bearbeiten Sie die Parameter nach Bedarf.
 - a. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.
 - b. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
 - c. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf Edit. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf OK.

HINWEIS: Wird **Bearb** nicht angezeigt, ist der Parameter entweder schreibgeschützt oder er kann nur mit Hilfe von Software geändert werden.

6. Zum Verlassen drücken Sie den Aufwärtspfeil. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

Über das Display verfügbare Einrichtungsparameter für Digitalausgänge

Einstellung	Option oder Bereich	Beschreibung
Bezeichnung	-	Diese Bezeichnung kann nur mit Hilfe von Software geändert werden. Verwenden Sie dieses Feld, um die werkseitige Bezeichnung zu ändern und dem Digitalausgang einen beschreibenden Namen zuzuweisen.
Steuerungsmodus	Extern, MW-Synchr.,	In diesem Feld wird angezeigt, wie der Digitalausgang funktioniert:
	Alarm, Energie	 External: Der Digitalausgang wird entweder mit Hilfe von Software oder über eine SPS mit Befehlen ferngesteuert, die über die Kommunikationsschnittstellen übertragen werden.
		 MW-Synchr.: Der Digitalausgang ist mit einem der Mittelwertsysteme verknüpft. Das Messgerät sendet am Ende jedes Mittelwertintervalls einen Impuls an den Digitalausgang.
		 Alarm: Der Digitalausgang ist mit dem Alarmsystem verknüpft. Das Messgerät sendet einen Impuls an den Digitalausgang, sobald ein Alarm ausgelöst wird.
		 Energie: Der digitale Ausgang wird mit der pulsierenden Energie verbunden. Ist dieser Modus ausgewählt, können Sie den Energieparameter auswählen und die Impulsrate (p/k_h) einstellen.
Verhalten	Normal, Zeitlich festgelegt, A-Haltung	 Normal: Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Bei einem Auslöser für den externen Modus bleibt der Digitalausgang im EIN-Zustand, bis ein AUS-Befehl durch den Computer oder über die SPS gesendet wird. Bei einem Auslöser für den Alarmmodus bleibt der Digitalausgang im EIN-Zustand, bis der Abfallsollwert überschritten wird.
		 Zeitlich festgelegt: Der Digitalausgang bleibt f ür die im Einrichtungsregister "Einschaltdauer" definierte Periode im EIN-Zustand.
		 A-Haltung: Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Für einen internen Alarm, der mit einem Digitalausgang verknüpft ist, müssen Sie "Behavior Mode" auf "Coil Hold" einstellen. Der Ausgang wird eingeschaltet, sobald der Befehl "Aktivieren" empfangen wird, und er wird ausgeschaltet, wenn der Befehl "Selbsthaltung freigeben" empfangen wird. Bei Ausfall der Steuerspannung erinnert sich der Ausgang an und kehrt in den Zustand zurück, im dem er war, als die Steuerspannung unterbrochen wurde.
Einschaltdauer (s)	0 bis 9999	Mit dieser Einstellung wird die Impulsdauer (Einschaltdauer) in Sekunden festgelegt.
		HINWEIS: Im Energiemodus ist die Einschaltdauer des Digitalausgangsimpulses auf 20 ms festgelegt.
MW-System ausw.	Leistung, Strom	Gilt, wenn "Steuerungsmodus" auf "MW-Synchr." eingestellt ist. Wählen Sie das Mittelwertsystem aus, das überwacht werden soll.
Alarme ausw.	Alle verfügbaren Alarme	Gilt, wenn "Steuerungsmodus" auf "Alarm" eingestellt ist. Wählen Sie einen oder mehrere Alarme aus, die überwacht werden sollen.

Konfiguration der Digitalausgänge mit ION Setup

Sie können ION Setup für die Konfiguration der Digitalausgänge verwenden.

- 1. Starten Sie ION Setup.
- 2. Stellen Sie eine Verbindung zu Ihrem Messgerät her.

3. Konfigurieren Sie den Steuerungsmodus, den Sie für den Digitalausgang verwenden möchten.

Option	Beschreibung		
External oder Energy Pulsing	 Navigieren Sie zu I/O configuration > Energy Pulsing. Wählen Sie den zu konfigurierenden Digitalausgang aus und klicken Sie auf Edit. Wählen Sie "External" oder "Energy" aus der Dropdown-Liste Control. Bei "Energy" konfigurieren Sie die Energieimpulsparameter nach Erfordernis. 		
Alarm	1. Navigieren Sie zu Alarming .		
	 Wählen Sie den Alarmtyp des Alarms aus, den Sie mit dem Digitalausgang verknüpfen möchten und klicken Sie auf Edit. 		
	3. Konfigurieren Sie die Alarmparameter nach Bedarf.		
	4. Wählen Sie den Digitalausgang aus, den Sie mit dem Alarm verknüpfen möchten.		
	HINWEIS: Eventuell müssen Sie den Alarm aktivieren, bevor Sie den Digitalausgang verknüpfen können.		
Demand	1. Navigieren Sie zu Demand Setup .		
	 Wählen Sie den Mittelwerttyp aus, den Sie mit dem Digitalausgang verknüpfen möchten und klicken Sie auf Edit. 		
	3. Konfigurieren Sie die Mittelwertmodusparameter nach Bedarf.		
	 Klicken Sie auf die Schaltfläche Digital Output Association, um einen Digitalausgang zu verknüpfen. 		

- 4. Navigieren Sie zu I/O configuration > I/O Setup.
- 5. Wählen Sie einen zu konfigurierenden Digitalausgang aus und klicken Sie auf **Edit**.

Der Einrichtungsbildschirm für diesen Digitalausgang wird angezeigt.

- 6. Geben Sie einen beschreibenden Namen für den Digitalausgang in das Feld **Label** ein.
- 7. Konfigurieren Sie die anderen Einrichtungsparameter nach Bedarf.

8. Klicken Sie auf Send, um Ihre Änderungen zu speichern.

Digitalausgabe-Einrichtungsparameter, die über ION Setup verfügbar sind

Parameter	Werte	Beschreibung	
Bezeichnung	_	Verwenden Sie dieses Feld, um die werkseitige Bezeichnung zu ändern und dem Digitalausgang einen beschreibenden Namen zuzuweisen.	
Control Mode	External, Demand, Alarm, Energy	In diesem Feld wird angezeigt, wie der Digitalausgang funktioniert:	
		 External: Der Digitalausgang wird entweder mit Hilfe von Software oder über eine SPS mit Befehlen ferngesteuert, die über die Kommunikationsschnittstellen übertragen werden. 	
		 Demand: Der Digitalausgang ist mit einem der Mittelwertsysteme verknüpft. Das Messgerät sendet am Ende jedes Mittelwertintervalls einen Impuls an den Digitalausgang. 	
		 Alarm: Der Digitalausgang ist mit dem Alarmsystem verknüpft. Das Messgerät sendet einen Impuls an den Digitalausgang, sobald ein Alarm ausgelöst wird. 	
		 Energie: Der digitale Ausgang wird mit der pulsierenden Energie verbunden. Ist dieser Modus ausgewählt, können Sie den Energieparameter auswählen und die Impulsrate (Impulse/kW) einstellen. 	
Verhalten	Normal, Zeitlich festgelegt, Selbsth. Ausg.	 Normal: Dieser Modus gilt, wenn "Control Mode" auf "External" oder "Alarm" eingestellt ist. Bei einem Auslöser für den externen Modus bleibt der Digitalausgang im EIN-Zustand, bis ein AUS-Befehl durch den Computer oder über die SPS gesendet wird. Bei einem Auslöser für den Alarmmodus bleibt der Digitalausgang im EIN-Zustand, bis der Abfallsollwert überschritten wird. 	
		 Zeitlich festgelegt: Der Digitalausgang bleibt f ür die im Einrichtungsregister "Einschaltdauer" definierte Periode im EIN-Zustand. 	
		 Selbsth. Ausg. Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Für einen internen Alarm, der mit einem Digitalausgang verknüpft ist, müssen Sie "Verhalten" auf "Selbsth. Ausg." einstellen. Der Ausgang wird eingeschaltet, sobald der Befehl "Aktivieren" empfangen wird, und er wird ausgeschaltet, wenn der Befehl "Selbsthaltung freigeben" empfangen wird. Bei Ausfall der Steuerspannung erinnert sich der Ausgang an und kehrt in den Zustand zurück, im dem er war, als die Steuerspannung unterbrochen wurde. 	
On Time (s)	0 bis 9999	Mit dieser Einstellung wird die Impulsdauer (Einschaltdauer) in Sekunden festgelegt. HINWEIS: Im Energiemodus ist die Einschaltdauer des Digitalausgangsimpulses auf 20 ms festgelegt.	
MW-System ausw.	Power, Current	Gilt, wenn "Control Mode" auf "Demand Sync" eingestellt ist. Wählen Sie das Mittelwertsystem aus, das überwacht werden soll.	
Alarme ausw.	Alle verfügbaren Alarme	Gilt, wenn "Steuerungsmodus" auf "Alarm" eingestellt ist. Wählen Sie einen oder mehrere Alarme aus, die überwacht werden sollen.	
Associations	—	In diesem Feld werden zusätzliche Informationen angezeigt, wenn der Digitalausgang bereits mit einer anderen Messgerätfunktion verknüpft ist.	

Anwendungen für Relaisausgänge

Relaisausgänge können für die Nutzung in Schaltanwendungen, z. B. für die Bereitstellung von Ein-/Aus-Signalen zur Schaltung von Kondensatorbatterien, Generatoren und anderen externen Geräten und Anlagen, konfiguriert werden.

Konfiguration der Relaisausgänge über das Display

Sie können das Front-Bedienfeld für die Konfiguration der Relaisausgänge verwenden.

HINWEIS: Für die Konfiguration der Relaisausgänge wird die Verwendung von ION Setup empfohlen, da Einrichtungsparameter, die eine Texteingabe erfordern, nur mit Hilfe von Software geändert werden können.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.

- 3. Navigieren Sie zu E/A > Relais.
- 4. Verschieben Sie den Cursor, so dass er auf den einzurichtenden Relaisausgang zeigt, und drücken Sie auf **Bearb**.
- 5. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.

HINWEIS: Wird **Bearb** nicht angezeigt, ist der Parameter entweder schreibgeschützt oder er kann nur mit Hilfe von Software geändert werden.

- 6. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 7. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 8. Drücken Sie zum Verlassen den Aufwärtspfeil und dann auf **Ja**, um Ihre Änderungen zu speichern.

Über das Display verfügbare Einrichtungsparameter für Relaisausgänge

Parameter	Werte	Beschreibung
Bezeichnung	_	Verwenden Sie dieses Feld, um die werkseitige Bezeichnung zu ändern und dem Relaisausgang einen beschreibenden Namen zuzuweisen.
Steuerungsmodus	Extern, Alarm	In diesem Feld wird angezeigt, wie der Relaisausgang funktioniert:
		 Extern: Der Relaisausgang wird entweder mit Hilfe von Software oder über eine SPS mit Befehlen ferngesteuert, die über die Kommunikationsschnittstellen übertragen werden.
		 Alarm: Der Relaisausgang ist mit dem Alarmsystem verknüpft. Das Messgerät sendet einen Impuls an den Relaisausgang, sobald ein Alarm ausgelöst wird.
Verhalten	Normal, Zeitlich festgelegt, A-Haltung	 Normal: Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Bei einem Auslöser für den externen Modus bleibt der Relaisausgang im geschlossenen Zustand, bis ein Öffnen-Befehl durch den Computer oder über die SPS gesendet wird. Bei einem Auslöser für den Alarmmodus bleibt der Relaisausgang im geschlossenen Zustand, bis der Abfallsollwert überschritten wird.
		 Zeitlich festgelegt: Der Relaisausgang bleibt für die im Einrichtungsregister "Einschaltdauer" definierte Periode im EIN-Zustand.
		 A-Haltung: Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Für einen internen Alarm, der mit einem Relaisausgang verknüpft ist, müssen Sie "Verhalten" auf "A-Haltung" einstellen. Der Ausgang wird eingeschaltet, sobald der Befehl "Aktivieren" empfangen wird, und er wird ausgeschaltet, wenn der Befehl "Selbsthaltung freigeben" empfangen wird. Bei Ausfall der Steuerspannung erinnert sich der Ausgang an und kehrt in den Zustand zurück, im dem er war, als die Steuerspannung unterbrochen wurde.
Einschaltdauer (s)	0 bis 65535	Mit dieser Einstellung wird die Impulsdauer (Einschaltdauer) in Sekunden festgelegt.
Alarme ausw.	Alle verfügbaren Alarme	Gilt, wenn "Steuerungsmodus" auf "Alarm" eingestellt ist. Wählen Sie einen oder mehrere Alarme aus, die überwacht werden sollen.

Konfiguration der Relaisausgänge mit ION Setup

Sie können ION Setup verwenden, um die Relaisausgangsschnittstellen zu konfigurieren (Relais 1 und Relais 2).

- 1. Starten Sie ION Setup.
- 2. Stellen Sie eine Verbindung zu Ihrem Messgerät her.
- 3. Navigieren Sie zu I/O configuration > I/O Setup.
- 4. Wählen Sie einen zu konfigurierenden Relaisausgang aus und klicken Sie auf **Edit**.

Der Einrichtungsbildschirm für diesen Relaisausgang wird angezeigt.

- 5. Geben Sie unter **Label** einen beschreibenden Namen für den Relaisausgang ein.
- 6. Konfigurieren Sie die anderen Einrichtungsparameter nach Bedarf.
- 7. Klicken Sie auf Send, um Ihre Änderungen zu speichern.

Über ION Setup verfügbare Einrichtungsparameter für Relaisausgänge

Parameter	Werte	Beschreibung	
Bezeichnung	—	Verwenden Sie dieses Feld, um die werkseitige Bezeichnung zu ändern und dem Relaisausgang einen beschreibenden Namen zuzuweisen.	
Steuerungsmodus	External, Alarm	In diesem Feld wird angezeigt, wie der Relaisausgang funktioniert:	
		 External: Der Relaisausgang wird entweder mit Hilfe von Software oder über eine SPS mit Befehlen ferngesteuert, die über die Kommunikationsschnittstellen übertragen werden. 	
		 Alarm: Der Relaisausgang ist mit dem Alarmsystem verknüpft. Das Messgerät sendet einen Impuls an den Relaisausgang, sobald ein Alarm ausgelöst wird. 	
Verhalten	Normal, Zeitlich festgelegt, Selbsth. Ausg.	 Normal: Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Bei einem Auslöser für den externen Modus bleibt der Relaisausgang im geschlossenen Zustand, bis ein Öffnen-Befehl durch den Computer oder über die SPS gesendet wird. Bei einem Auslöser für den Alarmmodus bleibt der Relaisausgang im geschlossenen Zustand, bis der Abfallsollwert überschritten wird. 	
		 Timed: Der Relaisausgang bleibt f ür die im Einrichtungsregister "Einschaltdauer" definierte Periode im EIN-Zustand. 	
		 Selbsth. Ausg. Dieser Modus gilt, wenn "Steuerungsmodus" auf "Extern" oder "Alarm" eingestellt ist. Für einen internen Alarm, der mit einem Relaisausgang verknüpft ist, müssen Sie "Behavior Mode" auf "Coil Hold" einstellen. Der Ausgang wird eingeschaltet, sobald der Befehl "Aktivieren" empfangen wird, und er wird ausgeschaltet, wenn der Befehl "Selbsthaltung freigeben" empfangen wird. Bei Ausfall der Steuerspannung erinnert sich der Ausgang an und kehrt in den Zustand zurück, im dem er war, als die Steuerspannung unterbrochen wurde. 	
On Time (s)	0 bis 9999	Mit dieser Einstellung wird die Impulsdauer (Einschaltdauer) in Sekunden festgelegt.	
Alarme ausw.	Alle verfügbaren Alarme	Gilt, wenn "Steuerungsmodus" auf "Alarm" eingestellt ist. Wählen Sie einen oder mehrere Alarme aus, die überwacht werden sollen.	
Associations	_	In diesem Feld werden zusätzliche Informationen angezeigt, wenn der Relaisausgang bereits mit einer anderen Messgerätfunktion verknüpft ist.	
Energieimpulse

Sie können die Alarm-/Energie-LED oder die Digitalausgänge des Messgeräts für Energieimpulse konfigurieren:

- Das Messgerät ist mit einer Alarm-/Energieimpuls-LED ausgestattet. In einer Energieimpulskonfiguration gibt die LED Impulse aus, die für die Bestimmung der Genauigkeit der Energiemessungen des Messgeräts verwendet werden.
- Das Messgerät sendet die Impulse von den konfigurierten Digitalausgängen aus, mit denen dann durch einen Impulszähler die Genauigkeit der Energiemessungen des Messgeräts bestimmt wird.

Alarm-/Energieimpuls-LED über das Display konfigurieren

Sie können das Display zur Konfiguration der Messgerät-LED für Alarm- oder Energieimpulsanwendungen verwenden.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu E/A > LED.
- 4. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Bearb**.
- 5. Drücken Sie die Plus- oder Minustaste, um die Parameter nach Bedarf zu ändern, und drücken Sie dann auf **OK**.

	1	
Einstellung	Option oder Bereich	Beschreibung
Modus	Aus, Alarm, Energie	Mit "Aus" wird die LED vollständig ausgeschaltet.
		Mit "Alarm" wird die LED auf Alarmbenachrichtigung eingestellt.
		Mit "Energie" wird die LED auf Energieimpulse eingestellt.
Parameter	Wirkl. gel. Wirkl. empf. Wirkl. gel./empf. Blindl. gel. Blindl. empf. Blindl. gel./empf. Scheinl. gel. Scheinl. empf. Scheinl. gel./empf.	Legen Sie fest, welcher kumulierte Energiekanal für die Energieimpulse überwacht und verwendet wird. Diese Einstellung wird ignoriert, wenn der LED-Modus auf "Alarm" eingestellt ist.
Impulse pro (kh)	1 bis 9999999	In einer Energieimpulskonfiguration wird mit dieser Einstellung festgelegt, wie viele Impulse für jeweils 1 kWh, 1 kVARh oder 1kVAh kumulierter Energie an die LED gesendet werden. Diese Einstellung wird ignoriert, wenn der LED-Modus auf "Alarm" eingestellt ist.

6. Zum Verlassen drücken Sie den Aufwärtspfeil. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

Konfiguration der Alarm- / Energieimpuls-LED oder des Digitalausgangs für Energieimpulse mit ION Setup

Sie können ION Setup zur Konfiguration der Messgerät-LED oder eines Digitalausgangs für Energieimpulse verwenden:

- 1. Starten Sie ION Setup.
- 2. Stellen Sie eine Verbindung zu Ihrem Messgerät her.
- 3. Navigieren Sie zu I/O configuration > Energy Pulsing.
- 4. Wählen Sie die LED oder einen zu konfigurierenden Digitalausgang aus und klicken Sie auf **Edit**.

Der Einrichtungsbildschirm wird angezeigt.

- 5. Geben Sie unter **Label** einen beschreibenden Namen für den Digitalausgang ein.
- 6. Konfigurieren Sie die anderen Einrichtungsparameter nach Bedarf.
- 7. Klicken Sie auf Send, um Ihre Änderungen zu speichern.

Über ION Setup verfügbare Einrichtungsparameter für die Alarm-/Energieimpuls-LED

Parameter	Werte	Beschreibung
Mode	LED: Disabled, Alarm, Energy Digitalausgang: External, Energy	 LED: Die LED ist deaktiviert. Mit "Alarm" wird die LED auf Alarmbenachrichtigung eingestellt. Mit "Energy" wird die LED auf Energieimpulse eingestellt. Digitalausgang: Energy: Verbindet den Digitalausgang mit Energieimpulsen. External: Trennt den Digitalausgang von den Energieimpulsen.
Pulse rate (p/k_h)	1 bis 9999999	In einer Energieimpulskonfiguration wird mit dieser Einstellung festgelegt, wie viele Impulse für jeweils 1 kWh, 1 kVARh oder 1 kVAh kumulierter Energie an die LED gesendet werden.
Parameter	Active Energy Delivered Active Energy Received Active Energy Del+Rec Reactive Energy Delivered Reactive Energy Received Reactive Energy Del+Rec Apparent Energy Delivered Apparent Energy Del+Rec	Legen Sie fest, welcher kumulierte Energiekanal für die Energieimpulse überwacht und verwendet wird.

Alarme

Alarmübersicht

Mit einem Alarm benachrichtigt das Messgerät den Bediener, dass ein Alarmzustand erkannt wurde, wie z. B. ein Fehler oder ein Ereignis, das außerhalb der normalen Betriebsbedingungen liegt. Alarme sind normalerweise Sollwert-gelenkte Alarme und können für die Überwachung von bestimmten Verhaltensweisen, Ereignissen oder unerwünschten Zuständen in Ihrem elektrischen System programmiert werden.

Sie können Ihr Messgerät konfigurieren, um Alarme mit hoher, mittlerer und niedriger Priorität zu generieren und anzuzeigen, wenn vordefinierte Ereignisse in den gemessenen Werten oder Betriebszuständen des Messgeräts entdeckt werden. Ihr Messgerät protokolliert auch die Alarmereignis-Informationen.

Werkseitig wird das Messgerät mit einigen bereits aktivierten Alarmen ausgeliefert. Andere Alarme müssen konfiguriert werden, bevor das Messgerät Alarme generieren kann.

Passen Sie die Messgerät-Alarme nach Bedarf benutzerdefiniert an, z. B. durch die Änderung der Priorität. Mit den fortgeschrittenen Funktionen Ihres Messgeräts können Sie ebenfalls benutzerdefinierte Alarme erstellen.

Verfügbare Alarme

Ihr Messgerät unterstützt eine Anzahl verschiedener Alarmarten.

Art	Nummer
Intern	4
Digital	4
Standard	29

Interne Alarme

Ein interner Alarm ist die einfachste Alarmart. Er überwacht ein einziges Verhalten, ein einziges Ereignis oder einen einzigen Zustand.

Verfügbare interne Alarme

Ihr Messgerät verfügt über einen Satz von 4 internen Alarmen.

Alarmbezeichnung	Beschreibung
MessgEinsch.	Das Messgerät wird nach einer Unterbrechung der Steuerspannung eingeschaltet.
MessgReset	Das Messgerät wird aus einem beliebigen Grund zurückgesetzt.
MessgDiagn.	Die Selbstdiagnosefunktion des Messgeräts erkennt ein Problem.
Phasenumkehr	Das Messgerät erkennt eine andere als die erwartete Phasendrehrichtung.

Digitale Alarme

Digitale Alarme überwachen den EIN- oder AUS-Zustand der Digital- bzw. Statuseingänge des Messgeräts.

Digitalalarm mit Sollwertverzögerung

EV 1

werden.

Um Fehlauslösungen durch unregelmäßige Signale zu verhindern, können Sie Auslöse- und Abfallzeitverzögerungen für den digitalen Alarm einstellen.

HINWEIS: Um zu verhindern, dass das Alarmprotokoll mit unerwünschten Alarmauslösungen gefüllt wird, wird der digitale Alarm automatisch deaktiviert, falls der Digital- bzw. Statuseingang seinen Zustand mehr als 4 Mal innerhalb einer Sekunde bzw. mehr als 10 Mal innerhalb von zehn Sekunden ändert. In diesem Fall muss der Alarm mit dem Display oder ION Setup erneut aktiviert

Verfügbare digitale Alarme

Ihr Messgerät verfügt 2 digitale Alarme.

Start des Alarmzustandes

Alarmbezeichnung	Beschreibung
Digital-Alarm S1	Statuseingang 1
Digital-Alarm S2	Statuseingang 2

Standardalarme

Standard-Alarme sind Sollwert-gelenkte Alarme, die bestimmte Verhaltensweisen, Ereignisse oder unerwünschte Zustände im elektrischen System überwachen.

Standardalarme haben eine Erfassungsrate, die 50 bzw. 60 Messzyklen entspricht. Das ergibt nominell 1 Sekunde, sofern die Frequenzeinstellung des Messgeräts in Übereinstimmung mit der Systemfrequenz (50 oder 60 Hz) konfiguriert ist.

Viele der Standardalarme sind Dreiphasenalarme. Die Alarmsollwerte werden für jede der drei Phasen separat ausgewertet, der Alarm wird jedoch als ein einzelner Alarm gemeldet. Die Alarmauslösung erfolgt, wenn die erste Phase den Alarmauslösewert für die Dauer der Auslöseverzögerungszeit überschreitet. Der Alarm ist aktiv, solange eine der Phasen in einem Alarmzustand bleibt. Der Alarmabfall erfolgt, wenn die letzte Phase für die Dauer der Abfallverzögerungszeit unter dem Abfallwert bleibt.

Beispiel für den Alarmbetrieb bei oberem und unterem Sollwert (Standard)

Das Messgerät unterstützt Über- und Unter-Sollwert-Bedingungen bei Standardalarmen.

Eine Sollwertbedingung tritt ein, wenn die Amplitude des überwachten Signals den in der Einstellung "Auslösesollwert" vorgegebenen Grenzwert passiert und für die Dauer der in der Einstellung "Auslöseverzögerung" vorgegebenen Mindestzeit innerhalb dieses Grenzbereiches bleibt.

Eine Sollwertbedingung endet, wenn die Amplitude des überwachten Signals den in der Einstellung "Abfallsollwert" vorgegebenen Grenzwert passiert und für die Dauer der in der Einstellung "Abfallverzögerung" vorgegebenen Mindestzeit innerhalb dieses Grenzbereiches bleibt.

Sollwertüberschreitung

Wenn der Wert über den eingestellten Auslösesollwert ansteigt und dort lange genug für die Auslöseverzögerung (Δ T1) verbleibt, wird der Alarmzustand auf EIN gestellt. Wenn der Wert unter den eingestellten Abfallsollwert fällt und dort lange genug für die Abfallverzögerung (Δ T2) verbleibt, wird der Alarmzustand auf AUS gestellt.

Das Messgerät zeichnet das Datum und die Uhrzeit auf, wann das Alarmereignis beginnt (ER 1) und wann es endet (ER 2). Außerdem führt das Messgerät jede Aufgabe aus, die dem Ereignis zugewiesen wurde, wie z.B. Ansteuerung eines Digitalausgangs. Das Messgerät zeichnet auch die Maximalwerte (Max 1 und Max 2) vor, während und nach der Alarmzeit auf.

Sollwertunterschreitung

Wenn der Wert unter den eingestellten Auslösesollwert fällt und dort lange genug für die Auslöseverzögerung (Δ T1) verbleibt, wird der Alarmzustand auf EIN gestellt. Wenn der Wert über den eingestellten Abfallsollwert steigt und dort lange genug für die Abfallverzögerung (Δ T2) verbleibt, wird der Alarmzustand auf AUS gestellt.

Das Messgerät zeichnet das Datum und die Uhrzeit auf, wann das Alarmereignis beginnt (ER 1) und wann es endet (ER 2). Außerdem führt das Messgerät jede Aufgabe aus, die dem Ereignis zugewiesen wurde, wie z.B. Ansteuerung eines Digitalausgangs. Das Messgerät zeichnet auch die Minimalwerte (Min 1 und Min 2) vor, während und nach der Alarmzeit auf.

Maximal zulässiger Sollwert

Das Messgerät wurde programmiert, um bei der Vermeidung von Nutzer-Dateneintragsfehlern zu helfen. Es stehen eingerichtete Grenzwerte für die Standardalarme zur Verfügung.

Der maximale Sollwert, der für einige der Standardalarme eingestellt werden kann, hängt vom Spannungswandlerverhältnis (SPW-Verhältnis), Stromwandlerverhältnis (STW-Verhältnis), Systemtyp (d. h. Anzahl Phasen) und/ oder von den werkseitig programmierten Obergrenzen für Spannung und Strom ab.

HINWEIS: Das SPW-Verhältnis ist die SPW-Primärspannung geteilt durch die SPW-Sekundärspannung. Das STW-Verhältnis ergibt sich aus dem STW-Primärstrom geteilt durch den STW-Sekundärstrom.

Standardalarm	Maximaler Sollwert
Überstrom, Phase	(Maximalstrom) x (STW-Verhältnis)
Unterstrom, Phase	(Maximalstrom) x (STW-Verhältnis)
Überstrom, Neutral	(Maximalstrom) x (STW-Verhältnis) x (Anzahl Phasen)
Überstrom, Erdung	(Maximalstrom) x (STW-Verhältnis)
Überspannung, L-L	(Maximalspannung) x (SPW-Verhältnis)
Unterspannung, L-L	(Maximalspannung) x (SPW-Verhältnis)
Überspannung, L-N	(Maximalspannung) x (SPW-Verhältnis)
Unterspannung, L-N	(Maximalspannung) x (SPW-Verhältnis)
Überaktive Leistung	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-Blindleistung	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-Scheinleistung	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kW-MW, akt.	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kW-MW, zuletzt	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kW-MW, progn.	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kVAr-MW, akt.	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kVAr-MW, zuletzt	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)

Standardalarm	Maximaler Sollwert
Über-kVAr-MW, progn.	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kVA-MW, akt.	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kVA-MW, zuletzt	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Über-kVA-MW, progn.	(Maximalspannung) x (Maximalstrom) x (Anzahl Phasen)
Überspannung Unsym.	(Maximalspannung) x (SPW-Verhältnis)
Phasenausfall	(Maximalspannung) x (SPW-Verhältnis)

Verfügbare Standardalarme

Ihr Messgerät verfügt über einen Satz von Standardalarmen.

HINWEIS: Einige Alarme gelten nicht für alle Systemtypkonfigurationen. Zum Beispiel können Phase-Neutral-Spannungsalarme nicht bei Dreiphasensystemen in Dreiecksschaltung aktiviert werden. Einige Alarme verwenden den Systemtyp und das SPW- bzw. STW-Verhältnis für die Bestimmung des zulässigen maximalen Sollwerts.

Alarmbezeichnung		Gültiger Bereich und Auflösung		
ION Setup	Display	ION Setup	Display	Einneiten
Over Phase Current	Überstrom, Ph	0,000 bis 99999,000	0 bis 99999	А
Under Phase Current	Unterstrom, Ph	0,000 bis 99999,000	0 bis 99999	А
Over Neutral Current	Überstrom, N	0,000 bis 99999,000	0 bis 99999	А
Over Ground Current	Überstrom, E	0,000 bis 99999,000	0 bis 99999	А
Over Voltage L-L	Überspannung, L-L	0,00 bis 999999,00	0 bis 999999	V
Under Voltage L-L	Unterspannung, L-L	0,00 bis 999999,00	0 bis 999999	V
Over Voltage L-N	Überspannung, L-N	0,00 bis 999999,00	0 bis 999999	V
Under Voltage L-N	Unterspannung, L-N	0,00 bis 999999,00	0 bis 999999	V
Over Active Power	Über-kW	0,0 bis 9999999,0	0 bis 9999999	kW
Over Reactive Power	Über-kVAr	0,0 bis 9999999,0	0 bis 9999999	kVAR
Over Apparent Power	Über-kVA	0,0 bis 9999999,0	0 bis 9999999	kVA
Leading True PF	LF voreil., real	-1,00 bis -0,01 und 0,01 bis 1,00		_
Lagging True PF	LF nacheil., real	-1,00 bis -0,01 und 0,01 bis 1,00		—
Leading Disp PF	Cos Phi, voreil.	-1,00 bis -0,01 und 0,01 bis 1,00 -		—
Lagging Disp PF	Cos Phi, nacheil.	-1,00 bis -0,01 und 0	,01 bis 1,00	_
Over Present Active Power Demand	Über-kW-MW, akt.	0,0 bis 9999999,0	0 bis 9999999	kW
Over Last Active Power Demand	Über-kW-MW, zuletzt	0,0 bis 9999999,0	0 bis 9999999	kW
Over Predicted Active Power Demand	Über-kVA-MW, progn.	0,0 bis 9999999,0	0 bis 9999999	kW
Over Present Reactive Power Demand	Über-kVAr-MW, akt.	0,0 bis 9999999,0	0 bis 9999999	kVAR
Over Last Reactive Power Demand	Über-kVAr-MW, zuletzt	0,0 bis 9999999,0	0 bis 9999999	kVAR
Over Predicted Reactive Power Demand	Über-kVAr-MW, progn.	0,0 bis 9999999,0	0 bis 9999999	kVAR
Over Present Apparent Power Demand	Über-kVA-MW, akt.	0,0 bis 9999999,0	0 bis 9999999	kVA
Over Last Apparent Power Demand	Über-kVA-MW, zuletzt	0,0 bis 9999999,0	0 bis 9999999	kVA
Over Predicted Apparent Power Demand	Über-kVA-MW, progn.	0,0 bis 9999999,0	0 bis 9999999	kVA
Over Frequency	Überfrequenz	0,000 bis 99,000 Hz		Hz

Alarmbezeichnung		Gültiger Bereich und Auflösung		Finheiten
ION Setup	Display	ION Setup	Display	Einneiten
Under Frequency	Unterfrequenz	0,000 bis 99,000		Hz
Over Voltage Unbalance	Überspann. Unsym.	0 bis 99		%
Over Voltage THD	Überspannung THD	0 bis 99		%
Phase Loss	Phasenausfall	0.00 bis 999999.00	0 bis 999999	—

Leistungsfaktor (LF)-Alarme

Sie können einen Alarm für voreilende Leistungsfaktoren oder nacheilende Leistungsfaktoren einstellen, um zu überwachen, wann der Leistungsfaktor des Stromkreises über den von Ihnen vorgegebenen Ansprechwert ansteigt oder darunter abfällt.

Die Alarme für vor- oder nacheilende Leistungsfaktoren verwenden die Leistungsfaktorquadranten als Werte auf der Y-Achse. Quadrant II befindet sich dabei am unteren Ende der Skala, gefolgt von Quadrant III und Quadrant I sowie zum Schluss Quadrant IV am oberen Ende der Skala.

Quadrant	LF-Werte	Voreilend/Nacheilend
Ш	0 bis -1	Voreilend (kapazitiv)
Ш	-1 bis 0	Nacheilend (induktiv)
I	0 bis 1	Nacheilend (induktiv)
IV	1 bis 0	Voreilend (kapazitiv)

Alarm für voreilende Leistungsfaktoren

Der Alarm für voreilende Leistungsfaktoren überwacht eine Sollwertüberschreitungsbedingung.

Alarm für nacheilende Leistungsfaktoren

Der Alarm für nacheilende Leistungsfaktoren überwacht eine Sollwertunterschreitungsbedingung.

Phasenverlust-Alarm

Der Phasenverlust-Alarm ist ein Unter-Sollwert-Alarm, der die Spannungen in einem 3-Phasen-System überwacht und den Alarm auslöst, wenn eine oder zwei Phasen unter den eingestellten Auslösesollwert fallen und dort lang genug für die Auslöseverzögerung verbleiben.

Wenn alle Phasen über den eingestellten Abfallsollwert steigen und dort lange genug für die Abfallverzögerung verbleiben, wird der Alarmzustand auf AUS gestellt.

Alarmprioritäten

Jeder Alarm hat eine Prioritätsebene, die Sie nutzen können, um zwischen Ereignissen zu unterscheiden, die eine sofortige Handlung benötigen, und denen, die keine Handlung benötigen.

Alarmpriorität	Alarmdisplaybenachrichtigung und Aufzeichnungsmethode			
	Alarm-LED	Alarmsymbol	Alarmdetails	Alarmprotokollierung
Hoch	Blinkt, während der Alarm aktiv ist.	Blinkt, während der Alarm aktiv ist. Das Alarmsymbol wird bis zur Quittierung angezeigt.	Klicken Sie auf Details , um die Ursache für die Auslösung bzw. für den Abfall des Alarms anzuzeigen. Klicken Sie auf Ack , um den Alarm zu quittieren.	Aufzeichnung im Alarmprotokoll
Mittel	Blinkt, während der Alarm aktiv ist.	Blinkt, während der Alarm aktiv ist.	Klicken Sie auf Details , um die Ursache für die Auslösung bzw. für den Abfall des Alarms anzuzeigen.	Aufzeichnung im Alarmprotokoll
Niedrig	Blinkt, während der Alarm aktiv ist.	Blinkt, während der Alarm aktiv ist.	Klicken Sie auf Details , um die Ursache für die Auslösung bzw. für den Abfall des Alarms anzuzeigen.	Aufzeichnung im Alarmprotokoll
Keine	Keine Aktivität	Keine	Keine	Aufzeichnung nur im Ereignisprotokoll.

HINWEIS: Die Alarm-LED-Benachrichtigung tritt nur auf, wenn die Alarm-/ Energieimpuls-LED für eine Alarmierung konfiguriert wurde.

Überlegungen zu mehreren gleichzeitigen Alarmen

Sind mehrere Alarme mit unterschiedlichen Prioritäten gleichzeitig aktiv, werden die Alarme in der Reihenfolge auf dem Display angezeigt, in der sie aufgetreten sind.

Übersicht über die Alarmeinrichtung

Für die Konfiguration von internen, digitalen oder Standardalarmen (1-Sek) kann das Messgerätdisplay oder ION Setup verwendet werden.

Wenn Sie Änderungen an der Grundeinrichtung des Messgeräts vornehmen, werden alle Alarme deaktiviert, um eine unerwünschte Alarmauslösung zu verhindern. Wenn Sie Standardalarm-Sollwerte über das Display konfigurieren, gehen alle zuvor mit ION Setup konfigurierten Dezimalstellen verloren.

HINWEIS

NICHT VORGESEHENER GERÄTEBETRIEB

- Überprüfen Sie, ob alle Alarmeinstellungen korrekt sind, und passen Sie sie bei Bedarf an.
- Aktivieren Sie erneut alle konfigurierten Alarme.

Die Nichteinhaltung dieser Anweisungen kann zu fehlerhaften Alarmfunktionen führen.

Integrierte Fehlerprüfung

ION Setup nimmt automatisch eine Überprüfung auf falsche Einrichtungskombinationen vor. Wenn Sie einen Alarm aktivieren, müssen Sie die Auslöse- und Abfallsollwerte zuerst auf akzeptable Werte einstellen, bevor Sie den Einrichtungsbildschirm verlassen können.

Einrichtung von Alarmen über das Display

Sie können das Display verwenden, um standardmäßige (1-Sek) interne und digitale Alarme zu erstellen und einzurichten.

Wir empfehlen, dass Sie ION Setup verwenden, um die Standardalarme (1-Sek) zu programmieren. ION Setup unterstützt eine höhere Auflösung. Dadurch können Sie bei der Einrichtung von Auslöse- und Abfallsollwerten für bestimmte Messungen mehr Dezimalstellen angeben.

- 1. Navigieren Sie zu den Menübildschirmen für die Alarmeinrichtung und wählen Sie den Alarm aus, den Sie einrichten möchten.
- 2. Konfigurieren Sie die Einrichtungsparameter gemäß den Erläuterungen in den einzelnen Abschnitten zur Alarmeinrichtung.

HINWEIS: Falls Sie für die Programmierung von Dezimalwerten bei einem Standardalarm (1-Sek) ION Setup verwendet haben, dürfen Sie für nachfolgende Änderungen von Alarmparametern (einschließlich Aktivierung bzw. Deaktivierung) nicht das Messgerätdisplay benutzen. Dadurch werden alle vorher mit Hilfe von ION Setup programmierten Kommazahlen entfernt.

3. Klicken Sie auf **Ja**, um die Änderungen im Messgerät zu speichern, wenn Sie dazu aufgefordert werden.

Einstellung von Alarmen mit ION Setup

Sie können ION Setup verwenden, um Alarme zu erstellen und einzurichten.

- 1. Starten Sie ION Setup und schließen Sie Ihr Messgerät an.
- 2. Öffnen Sie den Alarming-Bildschirm.
- 3. Wählen Sie den zu konfigurierenden Alarm aus und klicken Sie auf Edit.
- 4. Konfigurieren Sie die Einrichtungsparameter gemäß den Erläuterungen in den einzelnen Abschnitten zur Alarmeinrichtung.

Bitte lesen Sie den ION Setup-Gerätekonfigurationsleitfaden für weitere Informationen.

Einrichtungsparameter für interne Alarme

Konfigurieren Sie interne Alarm-Einrichtungsparameter nach Bedarf.

Einstellung	Option oder Bereich	Beschreibung
Aktiviert	Ja (mit Markierung) oder Nein (ohne Markierung)	Dadurch wird der Alarm aktiviert bzw. deaktiviert.
Priorität	Hoch, Mittel, Niedrig, Keine	Damit werden die Alarmpriorität und die Benachrichtigungsoptionen eingestellt.
Digital-Ausg. ausw. (Outputs)	Keine	Wählen Sie die Ausgänge aus, die bei
Relais ausw. (Outputs)	Digitalausgang D1	Alarmausiosung angesteuent werden solien.
	Digitalausgang D2	
	Digitalausgang D1+D2	
	Relais R1	
	Relais R2	
	Relais R1+R2	

ION Setup Steuerungen werden in Klammern angezeigt.

Einrichtungsparameter für digitale Alarme

Konfigurieren Sie digitale Alarm-Einrichtungsparameter nach Bedarf.

ION Setup Steuerungen werden in Klammern angezeigt.

Einstellung	Option oder Bereich	Beschreibung
Aktiviert	Ja (mit Markierung) oder Nein (ohne Markierung)	Dadurch wird der Alarm aktiviert bzw. deaktiviert.
Priorität	Hoch, Mittel, Niedrig, Keine	Damit werden die Alarmpriorität und die Benachrichtigungsoptionen eingestellt.
Auslösesollwert (Setpoint Pickup)	Ein, Aus	Steuern Sie mit dieser Einstellung, wann der Alarm auf der Basis des Zustandes des Digitaleingangs (Ein oder Aus) ausgelöst werden soll.
Auslöseverzögerung (Setpoint Pickup Delay)	0 bis 999999	Damit wird die Anzahl der Sekunden festgelegt, für die sich der Digitaleingang im Alarmauslösezustand befinden muss, bevor der Alarm ausgelöst wird.

Einstellung	Option oder Bereich	Beschreibung	
Abfallverzögerung (Setpoint Dropout Delay)	0 bis 999999	Damit wird die Anzahl der Sekunden festgelegt, für die sich der Digitaleingang außerhalb des Alarmauslösezustands befinden muss, bevor der Alarm deaktiviert wird.	
Wählen Sie Digitalausgang (Ausgänge)	Keine	Wählen Sie die Ausgänge aus, die bei	
Relais ausw. (Outputs)	Digitalausgang D1	Alarmausiosung angesteuen werden solien.	
	Digitalausgang D2		
	Digitalausgang D1+D2		
	Relais R1		
	Relais R2		
	Relais R1+R2		

Einrichtungsparameter für Standardalarme (1-Sek)

Konfigurieren Sie Standard-Alarm-Einrichtungsparameter nach Bedarf.

ION Setup Steuerungen werden in Klammern angezeigt.

HINWEIS: Wir empfehlen, dass Sie ION Setup verwenden, um die Standardalarme (1-Sek) zu programmieren. ION Setup unterstützt eine höhere Auflösung. Dadurch können Sie bei der Einrichtung von Auslöse- und Abfallsollwerten für bestimmte Messungen mehr Dezimalstellen angeben.

Einstellung	Option oder Bereich	Beschreibung
Aktiviert	Ja (mit Markierung) oder Nein (ohne Markierung)	Dadurch wird der Alarm aktiviert bzw. deaktiviert.
Priorität	Hoch, Mittel, Niedrig, Keine	Damit werden die Alarmpriorität und die Benachrichtigungsoptionen eingestellt.
Auslösesollwert (Pickup Limit)	Variiert in Abhängigkeit vom Standard- Alarm, den Sie einrichten	Das ist der Wert (Amplitude), den Sie als Sollwertgrenze für die Alarmauslösung festlegen. Bei Überschreitungszuständen bedeutet dies, dass der Wert die Auslösegrenze überschritten hat. Bei Unterschreitungszuständen bedeutet dies, dass der Wert die Auslösegrenze unterschritten hat.
Auslöseverzög. (Delay)	0 bis 999999	Damit wird die Anzahl der Sekunden angegeben, für die sich das Signal über dem Auslösesollwert (bei Überschreitungszuständen) bzw. unter dem Auslösesollwert (bei Unterschreitungszuständen) befinden muss, bevor der Alarm ausgelöst wird.
Abfallsollwert (Dropout Limit)	Variiert in Abhängigkeit vom Standard- Alarm, den Sie einrichten	Das ist der Wert (Amplitude), den Sie als Grenzwert für den Abfall des Alarmzustandes festlegen. Bei Überschreitungszuständen bedeutet dies, dass der Wert unter die Abfallgrenze gefallen ist. Bei Unterschreitungszuständen bedeutet dies, dass der Wert die Auslösegrenze überschritten hat.
Abfallverzögerung (Delay)	0 bis 999999	Damit wird die Anzahl der Sekunden angegeben, für die sich das Signal unter dem Abfallsollwert (bei Überschreitungszuständen) oder über dem Abfallsollwert (bei Unterschreitungszuständen) befinden muss, bevor der Alarmzustand beendet wird.
Ausl.sollwert vor-/nacheil. (Lead, Lag)	Lead oder Lag	Gilt nur für LF-Alarme (Leistungsfaktor). Verwenden Sie diese Kombination aus LF- Wert und Quadrant zur Einstellung des Auslösesollwertes für einen LF-

Einstellung	Option oder Bereich	Beschreibung	
		Überschreitungszustand (PF voreilend) bzw. einen LF-Unterschreitungszustand (LF nacheilend).	
Abf.sollwert vor-/nacheil. (Lead, Lag)	Lead oder Lag	Gilt nur für LF-Alarme (Leistungsfaktor). Verwenden Sie diese Kombination aus LF- Wert und Quadrant zur Einstellung des Abfallsollwertes für einen LF- Überschreitungszustand (PF voreilend) bzw. einen LF-Unterschreitungszustand (LF nacheilend).	
Digital-Ausg. ausw. (Outputs)	Keine	Wählen Sie die Ausgänge aus, die bei	
Relais ausw. (Outputs)	Digitalausgang D1	Alamausiosung angestedent werden solien.	
	Digitalausgang D2		
	Digitalausgang D1+D2		
	Relais R1		
	Relais R2		
	Relais R1+R2		

Alarmanzeige-LED

Sie können die Alarm-/Energieimpuls-LED des Messgeräts als Alarmanzeige verwenden.

Wenn die LED auf Alarmerkennung eingestellt ist, blinkt sie als Hinweis auf einen Alarmzustand.

Konfiguration der Alarm-LED über das Display

Sie können die Alarm-/Energieimpuls-LED über das Messgerätdisplay für Alarme konfigurieren.

- 1. Navigieren Sie zum Menübildschirm für die LED-Einrichtung.
- 2. Stellen Sie den Modus auf Alarm ein und drücken Sie auf OK.
- 3. Zum Verlassen drücken Sie den Aufwärtspfeil. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

LED mit Hilfe von ION Setup für Alarme konfigurieren

Sie können die Messgerät-LED mit Hilfe von ION Setup für Alarme konfigurieren:

- 1. Öffnen Sie ION Setup und schließen Sie Ihr Messgerät an. Anweisungen hierzu finden Sie in der ION Setup-Hilfe.
- 2. Navigieren Sie zu I/O configuration > Energy Pulsing.
- 3. Wählen Sie Front Panel LED und klicken Sie auf Edit.
- 4. Stellen Sie den Steuerungsmodus auf Alarm ein.
- 5. Klicken Sie auf **Send**, um Ihre Änderungen zu speichern.

Alarmanzeige und -benachrichtigung

Das Messgerät benachrichtigt Sie, wenn ein Alarmzustand erkannt wird.

Alarmsymbol

Sobald ein Alarm mit niedriger, mittlerer oder hoher Priorität ausgelöst wird, erscheint dieses Symbol oben rechts auf dem Displaybildschirm als Hinweis auf einen aktiven Alarm:

Bei Alarmen mit hoher Priorität wird das Alarmsymbol angezeigt, bis der Alarm quittiert wird.

Alarm-/Energieimpuls-LED

Bei einer Konfiguration für die Alarmanzeige blinkt die Alarm-/Energieimpuls-LED zudem als Hinweis darauf, dass das Messgerät einen Alarmzustand erkannt hat.

Alarmbildschirme

Sie können die Display-Tasten für die Navigation zur Alarm-Einrichtung oder zu den Displaybildschirmen verwenden.

Aktive Alarme

Wenn ein Auslöseereignis auftritt, erscheint die Liste der aktiven Alarme auf dem Bildschirm "Aktive Alarme" des Messgeräts. Drücken Sie **Detail** um weitere Informationen über das Ereignis anzuzeigen.

Alarmdetails

Details zu den Alarmen können Sie betrachten mithilfe der Bildschirme:

 aktiven Alarme (Active), Alarmverlauf (Hist), Alarmzähler (Count) und unbestätigte Alarme (Unack) auf dem Messgerät-Display oder

Liste der aktiven Alarme und Alarmverlaufsprotokoll

Jedes Auftreten eines Alarms mit niedriger, mittlerer oder hoher Priorität wird in der Liste der aktiven Alarme gespeichert und im Alarmverlaufsprotokoll aufgezeichnet.

Die Liste der aktiven Alarme speichert maximal 40 Einträge. Die Liste funktioniert als Ringspeicher, d. h., alte Einträge werden überschrieben, wenn neue Einträge (über 40) in die Liste der aktiven Alarme aufgenommen werden. Die Daten in der Liste der aktiven Alarme sind flüchtig, und die Liste wird bei einer Rücksetzung des Messgeräts neu initialisiert.

Das Alarmverlaufsprotokoll speichert 40 Einträge. Auch das Protokoll funktioniert als Ringspeicher und ersetzt alte Einträge mit neuen. Die Daten im

Alarmverlaufsprotokoll sind nicht flüchtig und werden bei einer Rücksetzung des Messgeräts beibehalten.

Betrachtung aktiver Alarmdaten mithilfe des Displays

Wenn ein Alarmzustand wahr wird (Alarm = EIN), wird der Alarm auf dem Bildschirm für aktive Alarme angezeigt.

Die Alarme werden ungeachtet ihrer Priorität in der Reihenfolge ihres Auftretens angezeigt. Die Alarmdaten zeigen das Datum und die Uhrzeit des Alarmereignisses, die Art des Ereignisses (zum Beispiel Auslösung oder intern), die Phase, auf der der Alarmzustand erkannt wurde, und den Wert, der den Alarmzustand verursacht hat, an.

HINWEIS: Es sind keine Alarmdetails verfügbar, wenn die Alarmpriorität auf "Keine" eingestellt wurde.

Die Alarmdetails (für Alarme mit niedriger, mittlerer und hoher Priorität) werden auch im Alarmverlaufsprotokoll aufgezeichnet.

- 1. Navigieren Sie zu Alarm > Active.
- 2. Wählen Sie den Alarm aus, den Sie anzeigen möchten (der neueste erscheint ganz oben).
- 3. Drücken Sie Detail.

HINWEIS: Bei nicht quittierten Alarmen mit hoher Priorität wird auf diesem Bildschirm die Option Quitt angezeigt. Drücken Sie**Ack** um den Alarm zu bestätigen, oder kehren Sie zum vorherigen Bildschirm zurück, wenn Sie den Alarm nicht bestätigen möchten.

Betrachtung von Alarmverlaufsdaten mithilfe des Displays

Das Alarmverlaufsprotokoll enthält Aufzeichnungen zu aktiven und vergangenen Alarmen.

Sobald ein aktiver Alarmzustand unwahr wird (Alarm = AUS), wird das Ereignis im Alarmverlaufsprotokoll aufgezeichnet und die Alarmbenachrichtigung (Alarmsymbol, Alarm-LED) wird ausgeschaltet.

Die Alarme werden ungeachtet ihrer Priorität in der Reihenfolge ihres Auftretens angezeigt. Die Alarmdaten zeigen das Datum und die Uhrzeit des Alarmereignisses, die Art des Ereignisses (zum Beispiel Abfall oder intern), die Phase, auf der der Alarmzustand erkannt wurde und den Wert, der die Ein- oder Ausschaltung des Alarmzustands verursacht hat, an.

HINWEIS: Es sind keine Alarmdetails verfügbar, wenn die Alarmpriorität auf "Keine" eingestellt wurde.

- 1. Navigieren Sie zu Alarm > Hist.
- 2. Wählen Sie den Alarm aus, den Sie anzeigen möchten (der neueste erscheint ganz oben).
- 3. Drücken Sie Detail.

HINWEIS: Für unbestätigte Alarme mit hoher Priorität erscheint die Option **Ack** auf diesem Bildschirm. Drücken Sie**Ack** um den Alarm zu bestätigen, oder kehren Sie zum vorherigen Bildschirm zurück, wenn Sie den Alarm nicht bestätigen möchten.

Betrachtung von Alarmzählern über das Display

Jedes Auftreten von jeder Alarmart wird im Messgerät gezählt und aufgezeichnet.

HINWEIS: Der Alarmzähler fällt nach Erreichen des Wertes 9999 auf 0 zurück.

- Wählen Sie Alarm > Count aus. Der Bildschirm Alarms Counter wird angezeigt.
- 2. Scrollen Sie durch die Liste, um die Anzahl der Alarmvorkommen für jede Alarmart anzuzeigen.

Quittieren von Alarmen mit hoher Priorität über das Display

Sie können Alarme über das Messgerätdisplay quittieren.

- 1. Navigieren Sie zu Alarm > Unack.
- 2. Wählen Sie den Alarm aus, den Sie quittieren möchten.
- 3. Drücken Sie Detail.
- 4. Drücken Sie **Ack**, um den Alarm zu bestätigen.
- 5. Wiederholen Sie diesen Vorgang für andere nicht quittierte Alarme.

Rückstellung der Alarme mithilfe vonION Setup

Verwenden Sie ION Setup, um Alarme zurückzustellen.

Sie können Alarme auch mithilfe des Messgerät-Displays zurückstellen.

- 1. Verbinden Sie Ihr Messgerät in ION Setup.
- 2. Öffnen Sie den Bildschirm Meter Resets.
- 3. Wählen Sie die zu löschenden Alarmparameter aus und klicken Sie auf **Reset**.

Messungen

Echtzeitmessungen

Das Leistungs- und Energiemessgerät misst Ströme und Spannungen und gibt den Effektivwert für alle drei Phasen und den Neutralleiter in Echtzeit aus.

Die Spannungs- und Stromeingänge werden kontinuierlich bei einer Abtastfrequenz von 64 Punkten pro Zyklus überwacht. Dieses Maß an Auflösung hilft, das Messgerät in die Lage zu versetzen, zuverlässige Messungen und berechnete elektrische Werte für verschiedene gewerbliche, Gebäude- und Industrieanwendungen bereitzustellen.

Energie

Das Messgerät bietet umfassende bidirektionale Energiemessdaten über 4 Quadranten.

Das Messgerät berechnet und speichert alle kumulierten Wirk-, Blind- und Scheinenergiemesswerte im nichtflüchtigen Speicher:

- Wh, VARh, VAh (geliefert und bezogen)
- Nettowerte Wh, VARh, VAh (geliefert bezogen)
- Absolutwerte Wh, VARh, VAh (geliefert + bezogen)

Alle Energieparameter geben den Gesamtwert für alle drei Phasen an. Die kumulierte Energie kann auf dem Display angezeigt werden.

Konfiguration der Energieskalierung über ION Setup

Sie können ION Setup für die Konfiguration der Energieskalierung verwenden. Basierend auf der Skalierung erfolgt der Energieüberlauf bei Erreichen des Schwellenwerts.

- 1. Starten Sie ION Setup.
- 2. Stellen Sie eine Verbindung zu Ihrem Messgerät her.
- 3. Öffnen Sie den Bildschirm Energy Scaling.
- 4. Klicken Sie auf **Edit**, um die Parameter für **Setup** nach Bedarf zu konfigurieren.
- 5. Wählen Sie die Parameter, die Sie für Ihre **Energy Scaling** einstellen möchten, aus der Dropdownliste aus.

HINWEIS: Wenn Sie einen **Energy Scaling**-Parameter einstellen, dessen Schwellenwert kleiner als die kumulierte Energie ist, wird die kumulierte Energie auf null zurückgesetzt.

6. Klicken Sie auf **Send**, um die Änderungen im Messgerät zu speichern.

Über ION Setup verfügbare Energy Scaling-Parameter

Parameter	Werte	Beschreibung
Auto (Werkeinstellung)	0 bis 9.2233 E	Die Einheiten der Energiewerte wechseln automatisch mit der Menge der kumulierten Energie – von Kilo zu Mega, von Mega zu Giga, von Giga zu Tera, von Tera zu Peta und von Peta zu Exa.
		Wenn einer der Energieparameter (geliefert oder bezogen) 9.2233 E überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.
Kilo (k)	0 bis 999.99 k	Wenn einer der Energieparameter (geliefert oder bezogen) 999.99 k überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.
Mega (M)	0 bis 999.99 M	Die Einheiten der Energiewerte wechseln automatisch mit der Menge der kumulierten Energie – von Kilo zu Mega.
		Wenn einer der Energieparameter (geliefert oder bezogen) 999.99 M überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.
Giga (G)	0 bis 999.99 G	Die Einheiten der Energiewerte wechseln automatisch mit der Menge der kumulierten Energie – von Kilo zu Mega und von Mega zu Giga.
		Wenn einer der Energieparameter (geliefert oder bezogen) 999.99 G überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.
Tera (T)	0 bis 999.99 T	Die Einheiten der Energiewerte wechseln automatisch mit der Menge der kumulierten Energie – von Kilo zu Mega, von Mega zu Giga und von Giga zu Tera.
		Wenn einer der Energieparameter (geliefert oder bezogen) 999.99 T überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.
Peta (P)	0 bis 999.99 P	Die Einheiten der Energiewerte wechseln automatisch mit der Menge der kumulierten Energie – von Kilo zu Mega, von Mega zu Giga, von Giga zu Tera und von Tera zu Peta.
		Wenn einer der Energieparameter (geliefert oder bezogen) 999.99 P überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.
Exa (E)	0 bis 9.2233 E	Die Einheiten der Energiewerte wechseln automatisch mit der Menge der kumulierten Energie – von Kilo zu Mega, von Mega zu Giga, von Giga zu Tera, von Tera zu Peta und von Peta zu Exa.
		Wenn einer der Energieparameter (geliefert oder bezogen) 9.2233 E überschreitet, werden alle Energieparameter auf 0 zurückgesetzt.

Voreingestellte Energiewerte

HINWEIS: Nicht zutreffend für MID/MIR-Messgerätmodelle.

Sie können die vorherigen Energiewerte eingeben, wenn Sie das Messgerät austauschen. Der voreingestellte Energiewert kann auf keinen höheren Wert als den maximalen Energieüberlaufwert eingestellt werden (9.2233 E).

Die voreingestellten Energiewerte umfassen Wirkenergie (Wh), Blindenergie (VARh) und Scheinenergie (VAh) (geliefert und bezogen).

Konfiguration der voreingestellten Energiewerte über ION Setup

HINWEIS: Nicht zutreffend für MID/MIR-Messgerätmodelle.

Sie können ION Setup für die Konfiguration der voreingestellten Energiewerte verwenden.

- 1. Starten Sie ION Setup.
- 2. Stellen Sie eine Verbindung zu Ihrem Messgerät her.
- 3. Öffnen Sie den Bildschirm Preset Energy.
- 4. Klicken Sie auf **Edit**, um die Parameter für **Setup** nach Bedarf zu konfigurieren.

- 5. Wählen Sie den Preset Energy-Wert für jeden Parameter aus der Liste aus.
- 6. Klicken Sie auf **Send**, um die Änderungen im Messgerät zu speichern.

Über ION Setup verfügbare Preset Energy-Parameter

Parameter	Werte	Beschreibung
Active Energy Delivered	0 bis 9.2233 E	Sie können die voreingestellten Energiewerte über dieses Feld eingeben.
Active Energy Received		
Reactive Energy Delivered		
Reactive Energy Received		
Apparent Energy Delivered		
Apparent Energy Received		

Min/Max-Werte

Wenn die Messdaten ihren niedrigsten bzw. höchsten Wert erreichen, aktualisiert und speichert das Messgerät diese Minimal- und Maximalwerte (Min/Max) im nichtflüchtigen Speicher.

Die Echtzeitwerte des Messgeräts werden alle 50 Perioden bei 50-Hz-Systemen bzw. alle 60 Perioden bei 60-Hz-Systemen aktualisiert.

Mittelwert

Leistungsmittelwert

Der Leistungsmittelwert ist ein Maß für den durchschnittlichen Energieverbrauch für ein festgelegtes Zeitintervall.

HINWEIS: Sofern nicht anders angegeben, beziehen sich Referenzen zum Mittelwert auf den Leistungsmittelwert.

Das Messgerät misst den Momentanverbrauch und kann den Mittelwert mit Hilfe verschiedener Methoden berechnen.

Strommittelwert

Das Messgerät berechnet den Strommittelwert mit der Blockintervall-, der synchronisierten oder der thermischen Mittelwertmethode.

Sie können das Mittelwertintervall in 1-Minuten-Schritten auf einen Wert zwischen 1 und 60 Minuten (z. B. 15 Minuten) einstellen.

Berechnungsmethoden für Mittelwerte

Der Leistungsmittelwert wird berechnet, indem die innerhalb eines bestimmten Zeitraums kumulierte Energie durch die Länge dieses Zeitraums geteilt wird.

Die Art und Weise, wie das Messgerät diese Berechnung durchführt, hängt von der ausgewählten Methode und den ausgewählten Zeitparametern ab (z. B. zeitlich festgelegter Rollblock-Mittelwert mit einem 15-Minuten-Intervall und einem 5-Minuten-Teilintervall).

Um den üblichen Abrechnungspraktiken der Stromversorgungsunternehmen gerecht zu werden, bietet das Messgerät die folgenden Arten der Leistungsmittelwertberechnung:

- Blockintervall-Mittelwert
- Synchronisierter Mittelwert
- Thermischer Mittelwert

•

Die Berechnungsmethode für Leistungsmittelwerte kann über das Display oder über die Software konfiguriert werden.

Blockintervall-Mittelwert

Bei den Methoden für die Blockintervall-Mittelwertberechnung geben Sie ein Zeitintervall (Block) an, das vom Messgerät für die Mittelwertberechnung verwendet wird.

Konfigurieren Sie durch Auswahl von einer der folgenden Methoden die Art und Weise, wie das Messgerät dieses Intervall behandelt:

Тур	Beschreibung
Zeitl. festgel. Gleitblock	Wählen Sie ein Intervall zwischen 1 und 60 Minuten (in 1-Minuten- Schritten) aus. Liegt das Intervall zwischen 1 und 15 Minuten, so wird die Mittelwertberechnung <i>alle 15 Sekunden aktualisiert</i> . Liegt das Intervall zwischen 16 und 60 Minuten, so wird die Mittelwertberechnung <i>alle 60 Sekunden aktualisiert</i> . Das Messgerät zeigt den Mittelwert für das letzte vollständige Intervall an.
Zeitlich festgel. Block	Wählen Sie ein Intervall zwischen 1 und 60 Minuten (in 1-Minuten- Schritten) aus. Das Messgerät berechnet und aktualisiert den Mittelwert am Ende jedes Intervalls.
Zeitl. festgel. Rollblock	Wählen Sie ein Intervall und ein Teilintervall aus. Das Teilintervall muss ein ganzzahliger Teiler des Intervalls sein (z. B. drei 5-Minuten- Teilintervalle für ein 15-Minuten-Intervall). Der Mittelwert wird <i>am</i> <i>Ende jedes Teilintervalls aktualisiert</i> . Das Messgerät zeigt den Mittelwert für das letzte vollständige Intervall an.

Beispiel für Blockintervall-Mittelwertberechnung

Die folgende Abbildung zeigt die unterschiedlichen Arten der Mittelwertberechnung unter Verwendung der Blockintervallmethode. In diesem Beispiel ist das Intervall auf 15 Minuten eingestellt.

Zeitl. festgel. Gleitblock

Zeitlich festgel. Block

Zeitl. festgel. Rollblock

Synchronisierter Mittelwert

Sie können die Mittelwertberechnungen auch so konfigurieren, dass diese mit einem externen Impulseingang, einem über eine Kommunikationsschnittstelle gesendeten Befehl oder durch die interne Echtzeituhr des Geräts synchronisiert werden.

Art	Beschreibung
Eingangssynchroni- sierter Mittelwert	Bei dieser Methode kann das Mittelwertintervall des Messgeräts mit einer externen Digitalimpulsquelle (z. B. einem Digitalausgang eines anderen Messgeräts), die mit einem Digitalausgang des Messgeräts verbunden ist, synchronisiert werden. Dadurch wird das Messgerät für jede Mittelwertberechnung mit dem Zeitintervall des anderen Messgeräts synchronisiert.
Befehlssynchronisier- ter Mittelwert	Bei dieser Methode können die Mittelwertintervalle mehrerer Messgeräte über das Kommunikationsnetzwerk synchronisiert werden. Überwacht zum Beispiel eine speicherprogrammierbare Steuerung (SPS) einen Impuls am Ende eines Mittelwertintervalls auf einem Verbrauchsmessgerät, kann die SPS so programmiert werden, dass sie einen Befehl an verschiedene Messgeräte ausgibt, sobald das Verbrauchsmessgerät ein neues Mittelwertintervall beginnt. Bei jeder Befehlsausgabe werden für dasselbe Intervall die Mittelwerte aller Messgeräte berechnet.
Uhrsynchronisierter Mittelwert	Bei dieser Methode kann das Mittelwertintervall mit der internen Echtzeituhr des Messgeräts synchronisiert werden. Dadurch ist die Synchronisierung des Mittelwertes mit einer bestimmten Zeit möglich (normalerweise mit einer vollen Stunde – z. B. 12:00 Uhr). Falls Sie eine andere Zeit für die Synchronisierung des Mittelwertintervalls auswählen, muss diese Zeit in Minuten nach Mitternacht angegeben werden. Soll die Synchronisierung beispielsweise um 8:00 Uhr stattfinden, geben Sie 480 Minuten ein.

HINWEIS: Für diese Mittelwertarten können Sie Block- oder Rollblockoptionen auswählen. Wenn Sie eine Rollblock-Mittelwertoption auswählen, müssen Sie ein Unter-Intervall spezifizieren.

Thermischer Mittelwert

Bei der thermischen Mittelwertmethode wird der Mittelwert basierend auf einer Temperaturreaktion errechnet, wobei die Funktionsweise eines Bimetallmessgeräts nachgeahmt wird.

Die Mittelwertberechnung wird am Ende jedes Intervalls aktualisiert. Sie können das Mittelwertintervall auf einen Wert zwischen 1 und 60 Minuten (in 1-Minuten-Schritten) einstellen.

Beispiel für thermischen Mittelwert

In der folgenden Abbildung wird die Berechnung des thermischen Mittelwertes veranschaulicht. In diesem Beispiel ist das Intervall auf 15 Minuten eingestellt. Das Intervall ist ein Zeitfenster, das sich entlang der Zeitachse bewegt. Die Berechnung wird am Ende jedes Intervalls aktualisiert.

Spitzenmittelwert

Das Messgerät zeichnet die Spitzen- (oder Maximal)werte für die kWD-, kVARDund die kVAD-Leistung (oder den Spitzenmittlewert) an.

Die Spitze jedes Wertes ist der höchste Durchschnittswert seit der letzten Messgerätrücksetzung. Die Werte werden im nicht-flüchtigen Speicher des Messgeräts aufbewahrt.

Das Messgerät speichert auch Datum und Uhrzeit, wann der Spitzenmittelwert auftrat. Zusätzlich zum Spitzenmittelwert speichert das Messgerät auch den zugehörigen durchschnittlichen 3-Phasen-Leistungsfaktor. Der mittlere 3-Phasen-Leistungsfaktor ist definiert als "kW-Mittelwert/kVA-Mittelwert" für das Spitzenmittel-wertintervall.

Prognostizierter Mittelwert

Das Messgerät berechnet den prognostizierten Mittelwert für das Ende des aktuellen Intervalls in kW, kVAr und kVA und bezieht dabei den bisherigen Energieverbrauch innerhalb des aktuellen Intervalls (bzw. Teilintervalls) und die gegenwärtige Verbrauchsrate in die Berechnung mit ein.

Der prognostizierte Mittelwert wird gemäß der Aktualisierungsrate des Messgeräts aktualisiert.

In der nachstehenden Abbildung wird veranschaulicht, wie sich eine Laständerung auf den prognostizierten Mittelwert in einem Intervall auswirken kann. In diesem Beispiel ist das Intervall auf 15 Minuten eingestellt.

Einrichtung der Mittelwertberechnungen

Auf den Bildschirmen für die Mittelwerteinrichtung können Sie die Leistungs- oder Strommittelwerte festlegen.

Der Mittelwert ist ein Maß des durchschnittlichen Verbrauchs für ein festgelegtes Zeitintervall.

- 1. Navigieren Sie zu Wart > Einr..
- 2. Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie **OK**.
- 3. Navigieren Sie zu Messg > MW.
- 4. Verschieben Sie den Cursor, um **MW Leistung** oder **Strommittelwert** auszuwählen.

5. Verschieben Sie den Cursor, so dass er auf den zu ändernden Parameter zeigt, und drücken Sie auf **Edit**.

Werte	Beschreibung	
Methode		
Zeitl. festgel. Gleitblock	Wählen Sie die passende Mittelwert-	
Zeitlich festgel. Block	aus	
Zeitl. festgel. Rollblock		
Befehl Sync. Block		
Befehl Sync. Rollblock		
Uhrsync. Block		
Uhrsync. Rollblock		
Eingangssync. Block		
Eing.sync. Rollblock		
Thermisch		
Intervall	·	
0–60	Stellen Sie das Mittelwertintervall (in Minuten) ein.	
Teilintervall		
0–60	Gilt nur für die Rollblockmethoden.	
	Legen Sie fest, in wie viele gleich große Teilintervalle das Mittelwertintervall unterteilt werden soll.	
Digital-Ausg. ausw.	•	
Keine	Legen Sie fest, an welchen Digitalausgang	
Digitalausgang D1	gesendet wird.	
Digitalausgang D2		
Digital-Eing. ausw.		
Keine	Gilt nur für die Eingangssynchronisierungs-	
Digitaleingang S1	methoden.	
Digitaleingang S2	Mittelwertsynchronisierung verwendet werden soll.	
Uhrsync. Zeit		
0–2359	Gilt nur für die Uhrzeitsynchronisierungsmethoden (damit wird das Mittelwertintervall mit der internen Uhr des Messgeräts synchronisiert).	
	Legen Sie fest, zu welcher Uhrzeit, ab Tagesbeginn, der Mittelwert synchronisiert werden soll. Beispiel: Stellen Sie diese Einstellung auf 0730 ein, wenn der Mittelwert um 7:30 Uhr synchronisiert werden soll.	

- 6. Ändern Sie den Parameter nach Bedarf und drücken Sie auf OK.
- 7. Verschieben Sie den Cursor, so dass er auf den nächsten zu ändernden Parameter zeigt, und drücken Sie auf **Edit**. Nehmen Sie die gewünschten Änderungen vor und drücken Sie auf **OK**.
- 8. Drücken Sie **Ja**, um Ihre Änderungen zu speichern.

Leistungsfaktor (LF)

Der Leistungsfaktor (LF) ist das Verhältnis zwischen Wirkleistung (P) und Scheinleistung (S).

Der LF wird als Zahl zwischen –1 und 1 oder als Prozentwert von –100 % bis 100 % bereitgestellt, wobei das Vorzeichen von der Konvention bestimmt wird.

$$PF = \frac{P}{S}$$

Eine rein ohmsche Last hat keine Blindkomponenten, so dass ihr Leistungsfaktor 1 ist (LF = 1 bzw. Leistungsfaktor Eins). Induktive oder kapazitive Verbraucher führen die Blindleistungskomponente (Q) im Stromkreis ein, was dazu führt, dass der LF näher ans 1 heranrückt.

Realer Leistungsfaktor und Cosinus Phi

Das Messgerät unterstützt Werte für den realen Leistungsfaktor und für Cosinus Phi:

- Der reale Leistungsfaktor umfasst den Oberwellenanteil.
- · Bei Cosinus Phi wird nur die Grundwellenfrequenz berücksichtigt.

HINWEIS: Wenn nicht festgelegt, ist der Leistungsfaktor, der vom Messgerät angezeigt wird, der echte Leistungsfaktor.

Echte, Wirk- und Scheinleistung (PQS)

Die typische Last eines elektrischen Wechselspannungssystems weist sowohl ohmsche als auch (induktive oder kapazitive) Blindkomponenten auf.

Die Wirkleistung (P) wird von ohmschen Lasten verbraucht. Die Blindleistung (Q) wird entweder von induktiven Lasten verbraucht oder von kapazitiven Lasten erzeugt.

Die Scheinleistung (S) ist die Kapazität Ihres gemessenen Stromnetzes zur Bereitstellung von Wirk- und Blindleistung.

Die Einheit der Leistung ist Watt (W oder kW) für die Wirkleistung P, Var (VAR oder kVAR) für die Blindleistung Q und Voltampere (VA oder kVA) für die Scheinleistung S.

Leistungsfluss

Die positive Wirkleistung P(+) fließt von der Spannungsquelle in Richtung Last. Die negative Wirkleistung P(-) fließt von der Last in Richtung Spannungsquelle.

Vorzeichenkonventionen für den Leistungsfaktor

Das Leistungsfaktorvorzeichen (LF-Vorzeichen) kann positiv oder negativ sein und wird von den Konventionen, die von den IEEE- oder IEC-Standards verwendet werden, definiert.

Sie können die Vorzeichenkonvention für den Leistungsfaktor (LF-Vorzeichen), die am Display verwendet wird, auf IEC oder IEEE einstellen.

LF-Vorzeichenkonvention: IEC

Das LF-Vorzeichen korreliert mit der Richtung, in die die Wirkleistung (kW) fließt.

- Quadrant 1 und 4: Bei positiver Wirkleistung (+kW) ist das LF-Vorzeichen positiv (+).
- Quadrant 2 und 3: F
 ür negative Wirkleistung (-kW) ist das LF-Vorzeichen negativ (-).

LF-Vorzeichenkonvention: IEEE

Das LF-Vorzeichen korreliert mit der LF-Lead/Lag-Konvention, d. h. der effektiven Lastart (induktiv oder kapazitiv):

- Für eine kapazitive Last (LF vorauseilend, Quadranten 2 und 4) ist das LF-Vorzeichen positiv (+).
- Für eine induktive Last (LF nacheilend, Quadranten 1 und 3) ist das LF-Vorzeichen negativ (-).

Leistungsfaktor-Registerformat

Das Messgerät bietet Leistungsfaktorwerte in verschiedenen Formaten, sodass sie an Ihre Energiemanagementsoftware angepasst werden können.

Leistungsfaktor im IEC- und Voreilend/Nacheilend-Format (IEEE): Float32und Int16U-Register

Das Messgerät bietet den Gesamtleistungsfaktor im IEC- und Voreilend/ Nacheilend-Format (IEEE) sowohl als Float32- und als Int16U-Datentyp. Sie können diese Register verwenden, um Leistungsfaktor-Informationen in Drittanbieter-Software zu überführen. Diese Register werden mit Hilfe der Standard-Vorzeichenkonventionen IEC und IEEE ausgewertet.

HINWEIS: Informationen zur Berechnung der tatsächlichen Leistungsfaktorwerte anhand der Werte in Int16U-Registern finden Sie in der Modbus-Registerliste Ihres Messgeräts, die auf www.se.com erhältlich ist.

Vier-Quadranten-Leistungsfaktor-Informationen: Fließkommaregister

Das Messgerät bietet auch LF-Informationen (einschließlich Vorzeichen und Quadrant) in einzelnen Fließkommaregistern für jeden der LF-Werte (z. B. Pro-Phase- und Gesamtwerte für reale LF und Cosinus Phi sowie für zugehörige Minimal- und Maximalwerte). Das Messgerät führt einen einfachen Algorithmus für den LF-Wert aus und speichert diesen im entsprechenden LF-Register.

Das Messgerät und die Software (wie etwa Power Monitoring Expert oder ION Setup) werten diese LF-Register für Berichte oder Dateneingabefelder gemäß dem folgenden Diagramm aus:

Quadrant	LF-Bereich	LF-Registerbereich	LF-Formel
Quadrant 1	0 bis +1	0 bis +1	LF-Wert = LF- Registerwert
Quadrant 2	-1 bis 0	-2 bis -1	LF-Wert = (–2) – (LF- Registerwert)

Quadrant	LF-Bereich	LF-Registerbereich	LF-Formel
Quadrant 3	0 bis -1	-1 bis 0	LF-Wert = LF- Registerwert
Quadrant 4	+1 bis 0	+1 bis +2	LF-Wert = (+2) – (LF- Registerwert)

Rufen Sie www.se.com auf und suchen Sie nach der Modbus-Registerliste Ihres Messgeräts, um eine Kopie davon herunterzuladen.

Timer

Das Messgerät unterstützt einen E/A-Timer, einen aktiven Last-Timer und einen Betriebszeit-Timer.

Navigieren Sie auf dem Messgerätdisplay zu den Timer- und E/A-Bildschirmen und zeigen Sie die Timer-Informationen an.

Betriebszeit-Timer

Der Betriebszeit-Timer (**Timer > Betr.**) verfolgt, wie lange das Messgerät eingeschaltet ist.

Last-Timer

Der Last-Timer verfolgt, für wie lange der Eingangsstrom den angegebenen Last-Timer-Sollwert für Strom überschreitet.

E/A-Timer

Der E/A-Timer zeigt an, wie lange ein Ein- oder Ausgang eingeschaltet war.

Rücksetzungen

Messgerätrücksetzungen

Mit Hilfe von Rücksetzungen lassen sich verschiedene kumulierte Parameter, die im Messgerät gespeichert sind, löschen. Zudem kann das Messgerät oder Messgerät-Zubehör auf diese Weise neu initialisiert werden.

Mit Messgerätrücksetzungen werden die Onboard-Datenprotokolle und zugehörigen Informationen des Messgeräts gelöscht. Rücksetzungen werden normalerweise durchgeführt, wenn Änderungen an den Grundeinrichtungsparametern des Messgeräts (z. B. Frequenz oder SPW/STW-Einstellungen) vorgenommen werden. Dadurch werden ungültige oder veraltete Daten als Vorbereitung zur Inbetriebnahme des Messgeräts gelöscht.

Init Messgerät

Init Messgerät ist ein Sonderbefehl, mit dem die Protokolldaten, Zähler und Timer des Messgeräts gelöscht werden.

Es ist üblich, das Messgerät nach Abschluss seiner Konfiguration zu initialisieren, bevor es zu einem Energiemanagementsystem hinzugefügt wird:

Navigieren Sie nach der Konfiguration aller Messgerät-Einrichtungsparameter durch die verschiedenen Anzeigebildschirme und überprüfen Sie, ob die angezeigten Daten gültig sind und dann führen Sie die Messgerät-Initialisierung.

Durchführung eines globalen Resets über das Display

Mit globalen Resets können alle Daten eines bestimmten Typs, z. B. alle Energiewerte oder alle Minimal- und Maximalwerte, gelöscht werden.

- 1. Navigieren Sie zu Wart > Reset.
- 2. Verschieben Sie den Cursor, so dass er auf **Globale Resets** weist, dann drücken Sie **Auswahl**.
- 3. Verschieben Sie den Cursor, so dass er auf den zurückzusetzenden Parameter zeigt, dann drücken Sie **Reset**.

Option	Beschreibung
Init Messgerät	Löscht alle in dieser Tabelle aufgelisteten Daten (Energiewerte, Mittelwerte, Minimal-/Maximalwerte, Zähler, Protokolle und Timer).
Energien	Löscht alle kumulierten Energiewerte (kWh, kVArh, kVAh).
Mittelwerte	Löscht alle Mittelwertregister.
Min/Max	Löscht alle Minimal- und Maximalwertregister.
Alarmzählungen & Protokolle	Löscht alle Alarmzähler und Alarmprotokolle.
E/A-Zähler/-Timer	Löscht alle E/A-Zähler und setzt alle Timer zurück.

 Geben Sie das Reset-Kennwort (Voreinstellung "0") ein und drücken Sie auf OK. 5. Drücken Sie **Ja** um die Rücksetzung zu bestätigen, oder **Nein**, um den Vorgang abzubrechen und zum vorherigen Bildschirm zurückzukehren.

Zur Durchführung des Resets über ION Setup lesen Sie bitte den Punkt "PM5300" in der ION Setup-Onlinehilfe oder im ION Setup Gerätekonfigurationsleitfaden, der auf www.se.com bereitsteht.

Durchführung eines Einzel-Resets über das Display

Mit Einzel-Resets können Sie Daten in einem bestimmten Register bzw. Registertyp löschen.

Einzel-Resets werden oft kombiniert, um Ihnen zu ermöglichen alle Daten eines ähnlichen Typs zu löschen, z.B. ein kWh-, kVAR- und kVA-Reset können in einem Energie-Reset kombiniert werden, der alle Energie-Protokolle des Messgeräts löscht.

- 1. Navigieren Sie zu **Wart > Reset**.
- 2. Verschieben Sie den Cursor, so dass er auf **Einzel-Resets** zeigt und drücken Sie auf **Ausw**.
- 3. Verschieben Sie den Cursor, so dass er auf den zurückzusetzenden Parameter zeigt, dann drücken Sie **Reset**.

Wenn zusätzliche Optionen für den Parameter vorhanden sind, drücken Sie auf **Ausw.**, verschieben Sie den Cursor zu der entsprechenden Option und drücken Sie auf **Reset**.

 Geben Sie das Reset-Kennwort (Voreinstellung "0") ein und drücken Sie auf OK.

5. Drücken Sie **Ja** um die Rücksetzung zu bestätigen, oder **Nein**, um den Vorgang abzubrechen und zum vorherigen Bildschirm zurückzukehren.

Verfügbare Einzel-Resets über das Display

Parameter	Option	Beschreibung		
Energie	Kumuliert	Löscht alle kumulierten Energiewerte (kWh, kVArh, kVAh).		
Mittelwert	Leistung, Strom	Legen Sie fest, welche Mittelwertregister gelöscht werden sollen (Leistungs- oder Strommittelwerte).		
Alarme	Ereignisablauf	Löscht das Alarmereignisablauf-Register (Liste der aktiven Alarme).		
	Verlaufsprotokoll	Löscht das Alarmverlaufsprotokoll.		
	Zähler	Wählen Sie Zähler und dann wählen Sie, welcher Alarmzähler gelöscht werden soll. Bitte lesen Sie die Tabelle zu den Alarmzähler-Reset- Optionen.		
Statuseingänge	Timer	Wählen Sie Timer aus und legen Sie fest, welcher Statuseingangstimer gelöscht werden soll (Sie können alle oder einzelne Statuseingangstimer auswählen).		
	Zähler	Wählen Sie Zähler aus und legen Sie fest, welcher Statuseingangszähler gelöscht werden soll (Sie können alle oder einzelne Statuseingangstimer auswählen).		
Digitalausgänge	Timer	Wählen Sie Timer aus und legen Sie fest, welcher Digitalausgangstimer gelöscht werden soll (Sie können alle oder einzelne Digitalausgangstimer auswählen).		
	Zähler	Wählen Sie Zähler aus und legen Sie fest, welcher Digitalausgangszähler gelöscht werden soll (Sie können alle oder einzelne Digitalausgangszähler auswählen).		
Aktiver Last-Timer		Löscht den Last-Betriebszeit-Timer und startet ihn neu.		
Mehrfachtarif	—	Löscht die kumulierten Werte in allen Tarifregistern.		

Zur Durchführung des Resets über ION Setup lesen Sie bitte den Punkt "PM5300" in der ION Setup-Onlinehilfe oder im ION Setup Gerätekonfigurationsleitfaden, der auf www.se.com bereitsteht.

Mehrtarife

Mehrfachtarif

Die Mehrfachtariffunktion ermöglicht Ihnen die Einrichtung verschiedener Tarife zur Speicherung der Energiewerte.

Die Energiewerte für verschiedene Tarife werden in den Registern gespeichert, die mit jedem dieser Tarife korrespondieren.

Mehrfachtarif-Beispiel

Die Mehrfachtariffunktion kann beispielsweise verwendet werden, wenn ein Versorgungsunternehmen Tarifzeitpläne mit tages- bzw. tageszeitabhängigen Preisen für den Energieverbrauch eingerichtet hat.

In der vorstehenden Abbildung entspricht die Fläche unter der Leistungskurve der verbrauchten Energie.

Normalerweise legt das Versorgungsunternehmen Tarifzeitpläne so fest, dass die Energiekosten in Zeiten mit hohem Bedarf bzw. hohem Energieverbrauch höher sind. Durch die Konfiguration dieser "Energietarifcontainer" wird bestimmt, wie schnell sich diese Container füllen, was wiederum steigenden Energiekosten entspricht. Der Preis pro kWh ist bei Tarif T1 am niedrigsten und bei Tarif T2 am höchsten.

Mehrfachtarif-Implementierung

Das Messgerät unterstützt die Konfiguration von bis zu 4 verschiedenen Tarifen zur Messung und Überwachung des Energieverbrauchs, die für Abrechnungsund Kostenanwendungen benutzt werden können.

Es gibt drei verschiedene Tarifmodi, mit denen Sie die Mehrfachtarif-Register aktivieren können:

- Befehlsmodus
- Tageszeitmodus
- Eingangsmodus

Steuerungsmodus für aktive Tarife

Der aktive Tarif wird auf der Basis des Tarifmodus gesteuert.

- Wenn das Messgerät auf den Befehlsmodus eingestellt ist, wird der aktive Tarif durch die Modbus-Befehle gesteuert, die von Ihrem Energiemanagementsystem oder von einem anderen Modbus-Master gesendet werden.
- Wenn das Messgerät in den Eingangsmodus versetzt wird, wird der aktive Tarif durch den Status der Digitaleingänge gesteuert.
- Wenn das Messgerät auf den Tageszeitmodus eingestellt ist, wird der aktive Tarif durch den Tagestyp, durch die Start- und Endzeiten sowie durch die Start- und Enddaten gesteuert.

Übersicht über den Befehlsmodus

Sie können den Befehlsmodus verwenden, um einen Modbus-Befehl zum Gerät zu senden, der den aktiven Tarif festlegt.

Der aktive Tarif wird auf die gemessene Energie angewandt, bis Sie einen anderen Modbus-Befehl senden, der einen anderen Tarif festlegt.

Durchsuchen Sie die Modbus-Registerliste unter www.se.com, um die Modbus-Zuordnung herunterzuladen.

Übersicht über den Tageszeitmodus

Sie können den Tageszeitmodus verwenden, um einen Tarifzeitplan zu erstellen, mit dem festgelegt wird, wo das Messgerät Energie- oder Eingangsmessdaten in Abhängigkeit von der Jahreszeit (Monat, Tag), der Art des Tages (jeden Tag, Wochenende, Wochentag oder einen bestimmten Tag der Woche) oder der Tageszeit speichert.

Die für die verschiedenen Tarife gesammelten Daten können anschließend bei Energieaudits oder für ähnliche Kosten- und Budgetplanungszwecke verwendet werden.

Tarifeinrichtung Tageszeitmodus

Ein gültiger Tageszeit-Tarif hat bestimmte Bedingungen und Beschränkungen:

- Jeder Tarif muss einen eindeutigen Zeitraum erfassen (Tarife können sich nicht überlappen). Allerdings kann es Zeiträume ohne Tarif geben.
- Es kann jede beliebige Anzahl von Tarifen von null bis zur maximalen Anzahl der Tarife angewendet werden.
- Tageszeittarife passen sich nicht an die Sommer- bzw. Winterzeit an.
- Februar in Schaltjahren (allerdings wird nicht empfohlen, den 29. Februar als Start- oder Enddatum festzulegen, da dieser Tarif in Nicht-Schaltjahren ungültig wäre).
- Außer bei Schaltjahren sind Tarifdaten nicht jahresspezifisch. Wenn Sie einen Tarif erstellen möchten, der am ersten Montag im August beginnt, müssen Sie das Datum für das aktuelle Jahr eingeben und dann die Tarifdaten für die nachfolgenden Jahre manuell aktualisieren.

Bei der Eingabe von Tarifinformationen führt das Gerät Gültigkeitskontrollen durch. Ist die Tarifkonfiguration ungültig, werden Sie entweder aufgefordert, die eingegebenen Daten zu ändern, oder der Tarif wird deaktiviert. Die Kontrollen können Folgendes umfassen:

- Die Start- und Endzeiten müssen verschieden sein (Sie können beispielsweise keinen Tarif erstellen, der um 02:00 Uhr beginnt und um 02:00 Uhr endet).
- Bei Tarifen, die jeden Tag angewendet werden, muss die Startzeit vor der Endzeit liegen. Sie können einen täglichen Tarif erstellen, der um 06:00 Uhr beginnt und um 02:00 Uhr endet, aber diese Zeiten gelten nur für den Tarif Jeden Tag und sind für die anderen Tarifarten ungültig.
- Der Starttag muss vor dem Endtag liegen, wenn die Tage im selben Monat sind. Sie können keinen Tarif erstellen, der am 15. Juni beginnt und am 12.

Methoden zur Tageszeittarif-Erstellung

Sie können Tageszeittarife mit Hilfe einer der beiden Methoden oder mit einer Kombination dieser Methoden erstellen.

- Jahreszeittarife unterteilen das Jahr in mehrere Abschnitte (üblicherweise Jahreszeiten), wobei jeder Abschnitt einen oder mehrere Tagestypen hat. Zum Beispiel könnte eine Konfiguration mit vier Tarifen unter Verwendung dieser Methode die Jahreszeiten "Sommer" und "Winter" haben, für die zudem verschiedene Wochenend- und Wochentagtarife benutzt werden.
- Tägliche Tarife können die Tage nach Tag der Woche, Wochentag, Wochenende oder jeden Tag unterteilen und auch die Tageszeit angeben. Beispielsweise könnte bei einer Konfiguration mit vier Tarifen jeder Tag im Jahr in Sechs-Stunden-Tarifperioden unterteilt werden oder es könnten zwei Tarife für Wochenenden und zwei Tarife für Wochentage verwendet werden.

Sie können diese Methoden kombinieren, wenn Sie zum Beispiel einen Tarif erstellen möchten, der für Montage vom 1. Januar bis zum 30. Juni von 09:00 bis 17:00 Uhr gelten soll. Da jedoch nur jeweils ein Tarif für einen Zeitraum gelten kann, können Sie keinen Tarif für jeden Tag oder einen Wochentagtarif verwenden, weil Sie bereits einen Tarif für den Zeitraum 09:00 bis 17:00 Uhr angegeben haben.

Je nach Konfiguration Ihrer Tarife und der maximalen, vom Messgerät unterstützten Tarifanzahl können Sie u. U. nicht für das gesamte Jahr Tarife zuweisen, d. h., es entstehen Zeitlücken, für die kein Tarif zugewiesen ist.

Tarif-Beispielkonfigurationen für ein Vier-Tarife-System

In diesen Beispielen wird das ganze Jahr mit vier Tarifen abgedeckt (es gibt keine Zeitperiode ohne einen zugeordneten Tarif).

Tarif	Art	Startdatum	Enddatum	Startzeit	Endzeit
1	Wochenende	21. Juni	20. Dezember	00:00	23:59
2	Wochenende	21. Dezember	20. Juni	00:00	23:59
3	Wochentag	21. Juni	20. Dezember	00:00	23:59
4	Wochentag	21. Dezember	20. Juni	00:00	23:59

Konfiguration 1: vier Tarife mit Wochentagen und Wochenenden

HINWEIS: Die Endzeit 23:59 ist tatsächlich 23:59:59 bzw. kurz vor Mitternacht.

Alle Wochenendtage gehören je nach Datum zu einem von zwei verschiedenen Tarifen. Alle Wochentage gehören je nach Datum zu einem von zwei verschiedenen Tarifen. Bei dieser Konfiguration werden keine Tarife basierend auf der Tageszeit oder andere Tagestypen als die Wochenend- bzw. Wochentage verwendet.

Beispieldaten und entsprechende Tarife:

• Freitag, 29. Juni = Tarif 3

• Sonntag, 28. November = Tarif 1

Konfiguration 2: Eine Saison für Wochenenden mit Stunden außerhalb der Spitzenlastzeiten und Nachtrandstunden sowie zwei Saisons für Wochentage mit Nachtrandstunden

Tarif	Art	Startdatum	Enddatum	Startzeit	Endzeit
1	Jeden Tag	1. Januar	31. Dezember	23:00	04:59
2	Wochentage	1. Mai	20. September	00:00	22:59
3	Wochentage	1. Oktober	30. April	05:00	22:59
4	Wochenen- den	1. Januar	31. Dezember	05:00	22:59

Auf jeden Wochentag wird ein Tarif zwischen 23:00 und 04:59 Uhr angewendet, was den Stunden außerhalb der Spitzenlastzeiten entspricht. Auf jeden Wochenendtag wird ein Tarif zwischen 05:00 und 22:59 Uhr angewendet, was den Nachtrandstunden entspricht. Alle Wochentage gehören zu einer von zwei Saisons (Sommer oder Winter). Außerdem werden pro Tag zwei Tarife angewendet.

Beispieldaten und entsprechende Tarife:

- Mittwoch, 21. März, 08:00 = Tarif 3
- Dienstag, 10. Januar, 21:00 = Tarif 3
- Sonntag, 24. Juni, 14:00 = Tarif 4
- Freitag, 17. August, 00:00 = Tarif 1

Konfiguration von Tageszeittarifen über das Display

Wenn das Messgerät für Tarife auf Tageszeit eingestellt ist, wird der aktive Tarif durch den Tagestyp, durch die Start- und Endzeiten sowie durch die Start- und Enddaten bestimmt.

Das Messgerät berechnet für ein bestimmtes Datum nicht den entsprechenden Tag der Woche, aber der 29. Februar wird als gültiges Datum betrachtet, wenn Sie das Messgerät während eines Schaltjahres programmieren.

Wenn Sie Tarifzeiten über das Front-Bedienfeld eingeben, ist zu beachten, dass der angezeigte Minutenwert die ganze Minute mit einschließt. Beispiel: Die Endzeit 01:15 umfasst den Zeitraum von 01:15:00 bis 01:15:59 Uhr. Um eine Tarifperiode zu erstellen, die direkt im Anschluss beginnt, müssen Sie die Startzeit des nächsten Tarifs auf 01:16 Uhr einstellen. Obwohl es so aussieht, als ob zwischen diesen Tarifen eine Lücke liegt, ist das nicht der Fall.

- 1. Navigieren Sie zu Wart > Einr..
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Messg > Tarif.
- 4. Wählen Sie Modus und drücken Sie Bearb.
- 5. Drücken Sie auf + oder –, um die Einstellung in **Tageszeit** zu ändern. Drücken Sie dann auf **OK**.
Verschieben Sie den Cursor, so dass er auf den zu ändernden Tarif (Tarif 1 bis Tarif 4) zeigt, und drücken Sie auf **Bearb**.

Parameter	Werte	Beschreibung
Tagestyp	Jeden Tag, Wochentag, Wochenende, Mo, Di, Mi, Do, Fr, Sa oder So	Legen Sie fest, an welchem Tag der Tarif aktiv ist. Nur Tarife mit der Einstellung "Jeden Tag" können über Mitternacht hinausgehen (z. B. von 23:00 bis 02:00 Uhr).
Startzeit	0000 bis 2359	Stellen Sie den Beginn der Tarifperiode im 24-Stunden- Format ein (00:00 bis 23:59). Die Startzeit darf nicht gleich der Endzeit sein.
Endzeit	0000 bis 2359	Stellen Sie das Ende der Tarifperiode im 24-Stunden- Format ein (00:00 bis 23:59). Die Endzeit darf nicht gleich der Startzeit sein.
Startmonat	1 bis 12	Stellen Sie den Monat ein, in dem die Tarifperiode beginnt. Dabei gilt: 1 = Januar, 2 = Februar, 3 = März, 4 = April, 5 = Mai, 6 = Juni, 7 = Juli, 8 = August, 9 = September, 10 = Oktober, 11 = November, 12 = Dezember.
Starttag	1 bis 31	Stellen Sie den Tag des Startmonats ein, an dem die Tarifperiode beginnt. Der Starttag muss vor dem Endtag liegen, wenn Startmonat und Endmonat identisch sind.
Endmonat	1 bis 12	Der Monat, in dem die Tarifperiode endet. Dabei gilt: 1 = Januar, 2 = Februar, 3 = März, 4 = April, 5 = Mai, 6 = Juni, 7 = Juli, 8 = August, 9 = September, 10 = Oktober, 11 = November, 12 = Dezember.
Endtag	1 bis 31	Der Tag des Endmonats, an dem die Tarifperiode endet.

7. Ändern Sie jeden Parameter nach Bedarf und drücken Sie zum Speichern auf **OK**.

Drücken Sie auf die Aufwärts/Abwärts-Pfeiltasten, um zwischen den Parametern zu wechseln.

8. Drücken Sie zum Verlassen den Aufwärtspfeil, und dann auf **Ja**, um Ihre Änderungen zu speichern.

Wiederholen Sie die Schritte nach Bedarf für die anderen Tarife.

Das Messgerät prüft die Konfiguration und zeigt eine Nachricht an, wenn Tarife mit widersprüchlichen Einstellungen vorhanden sind (z. B. Tarifperioden, die sich zeitlich überlappen).

Übersicht über den Eingangsmodus

Sie können den Eingangsmodus verwenden, um die Digitaleingänge des Geräts so einzustellen, dass sie erkennen, welcher Tarif für die gerade verbrauchte Energie gilt.

Die Anzahl der verschiedenen Tarife, die angewendet werden können, hängt von der Anzahl der verfügbaren Digitaleingänge und der Gesamtanzahl der von Ihrem Gerät unterstützten Tarife ab.

Zuweisung des Digitaleingangs für den Eingangssteuermodus

Sie müssen einen oder mehrere Digitaleingänge mit nicht exklusiven Verknüpfungen zuweisen, um den aktiven Tarif zu definieren.

Wenn ein Digitaleingang für die Mehrfachtariffunktion eingesetzt wird, kann er nicht für eine ausschließliche Verknüpfung (z. B. Mittelwertsynchronisierung) verwendet werden. Allerdings können Digitaleingänge gemeinsam mit einer nicht ausschließlichen Verknüpfung (z. B. Alarme) genutzt werden. Um einen Digitaleingang für die Festlegung von Tarifen verfügbar zu machen, müssen alle miteinander in Konflikt stehenden Verknüpfungen an der Quelle der ursprünglichen Verknüpfung manuell entfernt werden.

Die Digitaleingänge werden als Binärzähler verwendet, um den entsprechenden Tarif zu erkennen. Dabei gilt Aus = 0 und Ein = 1, und das höchstwertigste Bit (MSB) ist Digitaleingang 2 und das niederwertigste Bit (LSB) ist Digitaleingang 1. Gemäß dieser Definition muss der Digitaleingang 1 mit der Mehrfachtariffunktion verknüpft werden, damit der Tarif auf den Modus **Eingang** gestellt wird.

Digitaleingangsanforderungen für die erforderliche Anzahl der Tarife

Anzahl erforderlicher Tarife	Erforderliche Digitaleingänge	
	Konfiguration 1	Konfiguration 2
1	1 (Digitaleingang 1)	1 (Digitaleingang 1)
2	1 (Digitaleingang 1)	2 (Digitaleingang 1 und 2)
3	2 (Digitaleingang 1 und 2)	2 (Digitaleingang 1 und 2)
4	2 (Digitaleingang 1 und 2)	2 (Digitaleingang 1 und 2)

Konfiguration 1: Zuweisung von 2 Tarifen mit 2 Digitaleingängen

HINWEIS: Bei dieser Konfiguration gibt es keinen inaktiven Tarif.

Tarif	Digitaleingang 2	Digitaleingang 1
T1	0	0
T2	0	1

Konfiguration 2: Zuweisung von 2 Tarifen mit 2 Digitaleingängen

HINWEIS: Die Digitaleingangskonfiguration (00) bedeutet, dass keine aktiven Tarife vorhanden sind (alle Tarife sind deaktiviert).

Tarif	Digitaleingang 2	Digitaleingang 1
Keine	0	0
T1	0	1
T2	1	0

Konfiguration des Eingangsmodustarifs über das Display

Verwenden Sie das Display zur Konfiguration der Eingangsmodustarife. Sie können die Eingangsmodustarife auch mittels ION Setup konfigurieren.

Sie können keinen Eingangstarif konfigurieren, wenn der Digitaleingang 1 nicht für die Verknüpfung verfügbar ist. Ebenso muss der Digitaleingang 2 verfügbar sein, damit mehr als zwei Tarife ausgewählt werden können.

Der Status der Digitaleingänge wird für die Berechnung des Binärwertes des aktiven Tarifs verwendet. Dabei gilt Aus = 0 und Ein = 1. Die Berechnung der Tarifanzahl kann je nach Anzahl der auswählbaren Digitaleingänge variieren (d.h. Eingänge, die mit Mehrfachtarifen verknüpft werden können).

- 1. Navigieren Sie zu Wart > Setup.
- Geben Sie das Einrichtungspasswort (Voreinstellung ist "0") ein, dann drücken Sie OK.
- 3. Navigieren Sie zu Messg > Tarif.
- 4. Wählen Sie Modus und drücken Sie Bearb.
- 5. Drücken Sie + oder um die Einstellung auf **Input** zu ändern, dann drücken Sie **OK**.

HINWEIS: Wenn eine Fehlermeldung zur Digitaleingangsverknüpfung angezeigt wird, müssen Sie die Tarifeinrichtungsbildschirme verlassen und die Digitaleingangsverknüpfung entfernen.

- 6. Navigieren Sie zu Tarife und drücken Sie auf Bearb.
- 7. Drücken Sie + oder -, um die Anzahl der Tarife, die Sie einrichten möchten, zu ändern und drücken Sie **OK**.

Die maximale Anzahl an Tarifen, die Sie anwenden können, wird durch die Anzahl der verfügbaren digitalen Eingänge festgelegt.

8. Navigieren Sie zu Eingänge und drücken Sie auf Bearb.

Sofern zutreffend, drücken Sie + oder - um die Anzahl der Digitaleingänge zu ändern, die Sie für die Steuerung der Tarifauswahl (aktiver Tarif) verwenden möchten. Drücken Sie auf **OK**.

9. Drücken Sie zum Verlassen den Aufwärtspfeil, dann **Yes**, um Ihre Änderungen zu speichern.

Leistungsqualität

Leistungsqualitätsmessungen

Das Messgerät ermöglicht die Messung von Oberwellendaten bis zur 31. Ordnung.

Folgende Leistungsqualitätsmessungen sind verfügbar:

- Einzelne Oberwellen (ungerade Oberwellen bis zur 31. Ordnung)
- Klirrfaktor (THD, thd) für Strom und Spannung (Phase-Phase, Phase-Neutralleiter)
- Gesamte Mittelwertverzerrung (TDD)

Die folgenden Wellendaten sind auf dem Display verfügbar:

- · Betrag und Winkel der Grundwelle (erste Oberwelle).
- Grafische Darstellung von der 3. bis zur 31. Harmonischen ausgedrückt als Prozentanteil der Grundwelle.

Übersicht über Oberwellen

Oberwellen sind ganzzahlige Mehrfache der Grundwellenfrequenz im Stromnetz.

Oberwellendaten eignen sich für Energiequalitätsanalysen, zur Bestimmung der richtigen Transformatorauslegung sowie zur Wartung und Fehlerbehebung. Eine Auswertung der Oberwellen wird für die Übereinstimmung mit System-Leistungsqualitätsstandards gemäß EN50160 und Messgerät-Leistungsqualitätsstandards gemäß IEC 61000-4-30 benötigt.

Messungen von Oberwellen umfassen pro-Phase-Magnituden und Winkel (relativ zur Grundfrequenz der Phase-A-Spannung) für die Grundwelle sowie für die Oberwellen höherer Ordnung relativ zur Grundwellenfrequenz. Durch die Systemtypeinstellung des Messgeräts wird definiert, welche Phasen vorhanden sind, und bestimmt, wie die Phase-Phase- bzw. Phase-Neutral-Spannungsoberwellen und -Stromoberwellen berechnet werden.

Oberwellen werden verwendet, um festzustellen, ob die gelieferte Systemleistung die erforderlichen Leistungsqualitätsstandards erfüllt, oder ob nicht-lineare Lasten Ihr Stromsystem beeinträchtigen. Oberwellen des Stromsystems können einen Stromfluss in einem Neutralleiter und Schaden an der Ausrüstung verursachen, z. B. eine erhöhte Heizung in Elektromotoren. Energieaufbereiter oder Oberwellenfilter können für die Minimierung unerwünschter Oberwellen eingesetzt werden.

Klirrfaktor-Prozentwert

Der Klirrfaktor (THD-Prozentwert) ist ein Maß der Gesamtstörung der Spannungsoder Stromoberwellen pro Phase, die im Stromnetz vorhanden ist.

Der THD-Prozentwert liefert einen allgemeinen Hinweis auf die Qualität einer Wellenform. Der THD-Prozentwert wird für jede Phase sowohl für Spannung als auch für Strom berechnet.

Gesamte Mittelwertverzerrung

Die gesamte Mittelwertverzerrung (TDD) ist die Störung der Stromoberwellen pro Phase im Verhältnis zum Volllastmittelwert des elektrischen Systems. Der TDD-Wert zeigt die Auswirkung der harmonischen Verzerrung im System an. Wenn Ihr System zum Beispiel hohe THD-Werte, aber einen niedrigen Mittelwert aufweist, ist die Auswirkung der harmonischen Verzerrung auf Ihr System möglicherweise unerheblich. Bei Volllast entspricht der THD-Wert für die Stromoberwellen allerdings dem TDD-Wert, was sich negativ auf Ihr System auswirken könnte.

Berechnung des Oberwellenanteils

Der Oberwellenanteil (H_c) ist gleich dem RMS-Wert aller Oberwellenkomponenten in einer Phase des Leistungssystems.

Das Messgerät verwendet folgende Gleichung zur Berechnung von H_C:

HC = $\sqrt{(H_2)^2 + (H_3)^2 + (H_4)^2}$...

THD-%-Berechnungen

THD% ist eine schnelle Berechnungsart der Gesamtstörungen in einer Wellenform und gibt den Anteil der Oberwellen (H_C)im Verhältnis zu den Grundwellen (H_1) an.

Das Messgerät berechnet den THD-Wert standardmäßig mit der folgenden Gleichung:

$$THD = \frac{H_{C}}{H_{1}} \times 100\%$$

thd-Berechnungen

thd ist eine alternative Methode zur Berechnung des Klirrfaktors, der den RMS-Wert für den Gesamtoberwellenanteil statt des Grundwellengehalts verwendet.

Das Messgerät berechnet den thd-Wert mit der folgenden Gleichung:

thd =
$$\frac{\text{HC}}{\sqrt{(\text{H1})^2 + (\text{HC})^2}} \times 100$$

TDD-Berechnungen

Mit TDD (gesamte Mittelwertverzerrung) werden die Oberwellenströme zwischen einem Endverbraucher und einer Spannungsquelle ausgewertet.

Die Oberwellenwerte basieren auf einem Verknüpfungspunkt (PCC), der einen gemeinsamen Punkt bezeichnet, von dem jeder Benutzer Spannung aus einer Spannungsquelle bezieht.

Das Messgerät nutzt folgende Gleichung, um TDD zu berechnen:

TDD = $(\sqrt{(HCIA)^2 + (HCIB)^2 + (HCIC)^2)} / (ILoad) \times 100$

WobeilLoad gleich der maximalen Anforderungslast an das Leistungssystem ist.

Betrachtung von Oberwellendaten über das Display

Sie können Oberwellendaten mit dem Display anzeigen:

- 1. Navigieren Sie zu **Oberw.**
 - Der Bildschirm Oberwellen % wird angezeigt.
- 2. Drücken Sie auf die Spannungs- bzw. Stromoberwellen, die Sie anzeigen möchten.

IEEE-Modus	IEC-Modus	Beschreibung
V L-L	U	Oberwellendaten der Phase-Phase- Spannung
V L-N	V	Oberwellendaten der Phase-Neutral- Spannung
Amp	1	Stromoberwellendaten
TDD	TDD	Daten der gesamten Mittelwertverzerrung

Es werden die Beträge und Winkel der Grundwelle (1.) für alle Phasen angezeigt.

3. Drücken Sie **3-11**, **13-21** oder **21-31**, um die Diagramme für die Oberwellen der 3. bis 11., der 13. bis 21. bzw. der 23. bis 31 anzusehen.

Drücken Sie zum Beispiel für die Anzeige des Bildschirms für die Oberwellen der 13. bis 21.Ordnung auf **13-21**.

Die vertikale Achse des Oberwellendiagramms zeigt die Amplitude der Oberwelle als Prozentanteil der Grundwellenamplitude und wird auf der Basis der größten dargestellten Oberwelle skaliert. Auf jedem vertikalen Balken befindet sich oben eine Markierung, die den Maximalwert der Oberwelle anzeigt. Ist die Oberwelle größer als die Grundwelle, hat diese Markierung eine Dreiecksform als Hinweis darauf, dass der Wert außerhalb des zulässigen Bereiches liegt.

Betrachtung von TDD-Daten über das Display

Auf dem Display des Messgeräts werden Bildschirme mit TDD-Werten anzeigen.

HINWEIS: Die Modbus-Zuordnung des Messgeräts umfasst Register für Oberwellendaten zur Integration in ein Energiemanagementsystem. Sie können die Modbus-Registerliste Ihres Messgeräts unter www.se.com herunterladen.

- 1. Navigieren Sie zu Oberw. > TDD.
 - Die TDD-Informationen werden angezeigt.
- 2. Drücken Sie die Aufwärtstaste, um zu den Hauptdisplay-Bildschirmen zurückzukehren.

Betrachtung von THD- bzw. thd über das Display

Sie können THD- bzw. thd-Daten über das Display betrachten.

HINWEIS: Die Modbus-Zuordnung des Messgeräts umfasst Register für Klirrfaktordaten zur Integration in ein Energiemanagementsystem.

- 1. Navigieren Sie zu THD, um den Bildschirm THD/thd Select anzusehen.
- 2. Drücken Sie **THD**, um die Werte anzuzeigen, die anhand der Grundwelle berechnet wurden, oder auf**thd**, um die Werte anzuzeigen, die anhand des Effektivwerts aller Oberwellen in der jeweiligen Phase (einschließlich Grundwelle) berechnet wurden.

IEEE-Modus	IEC-Modus	Beschreibung
Amp	I	Klirrfaktordaten für Phasen- und Neutralleiterströme
V L-L	U	Klirrfaktor der Phase-Phase-Spannung
V L-N	V	Klirrfaktor der Phase-Neutral-Spannung

3. Drücken Sie auf die THD- bzw. thd-Werte für Strom oder Spannung, die Sie anzeigen möchten.

Es werden die Klirrfaktorprozentwerte angezeigt.

4. Drücken Sie die Aufwärtstaste, um zu den Hauptdisplay-Bildschirmen zurückzukehren.

Wartung

Wartungsübersicht

Das Messgerät enthält keine Teile, die vom Benutzer selbst gewartet werden müssen. Sollte Ihr Messgerät gewartet werden müssen, wenden Sie sich bitte an den für Sie zuständigen Mitarbeiter des technischen Supports von Schneider Electric.

HINWEIS

BESCHÄDIGUNG DES MESSGERÄTS

- Öffnen Sie das Messgerätgehäuse nicht.
- Reparieren Sie keine Komponenten des Messgeräts.

Die Nichtbeachtung dieser Anweisungen kann Sachschäden zur Folge haben.

Öffnen Sie das Messgerät nicht. Wird das Messgerät geöffnet, erlischt die Garantie.

Speicher des Power Meters

Das Messgerät verwendet seinen nichtflüchtigen Speicher zur Sicherung von Daten und Messgerätkonfigurationswerten.

Bei Einhaltung der vorgeschriebenen Betriebstemperatur hat der nichtflüchtige Speicher eine Lebensdauer von mindestens 45 Jahren.

HINWEIS: Die Lebensdauer hängt von den Betriebsbedingungen ab. Keine der hierzu gemachten Aussagen stellt eine ausdrückliche oder implizite Garantie dar.

Firmwareversion, Modellbezeichnung und Seriennummer

Sie können das Messgerätmodell, die Seriennummer, das Herstellungsdatum, die Firmwareversion (einschließlich BS [Betriebssystem] und RS [Resetsystem]), die Sprachversion, die werkseitig eingestellte MAC-Adresse* (z. B.: 9C-35-5B-5F-4C-4D) und die BS-CRC (zyklische Redundanzprüfung) anzeigen. Der BS-CRC-Wert ist eine Zahl (Hexadezimalformat), die die Unverwechselbarkeit zwischen verschiedenen BS-Firmwareversionen gewährleistet.

* Nur zutreffend für die Messgerätmodelle PM5320 / PM5340 / PM5341.

 Verwendung des Display-Bedienfelds: Navigieren Sie zu Wart > Diagn. > Info.

Firmware-Aktualisierungen

Das Power Meter unterstützt das Herunterladen von neuen Firmware- und Sprachdateien über die Kommunikationsverbindung.

Hierfür wird die kostenlose DLF3000-Software benötigt, die unter www.se.com verfügbar ist. DLF3000 enthält eine umfangreiche Hilfedatei mit Informationen zur Bedienung der Software. Die neuesten Firmware- und Sprachdateien sind ebenfalls auf der Website erhältlich.

Messgerät mit DLF3000 aktualisieren

Verwenden Sie das Aktualisierungs-Dienstprogramm DLF3000 (erhältlich unter www.se.com), um die Firmwaredateien des Messgeräts zu aktualisieren.

HINWEIS: Für das Herunterladen der Firmware über die Kommunikationsverbindung wird eine Baudrate von 19200 empfohlen.

Bevor Sie beginnen, laden Sie die erforderlichen Dateien von www.se.com herunter:

- Laden Sie die neueste Version von DLF3000 herunter und installieren Sie sie auf Ihrem Computer.
- Laden Sie die Firmware für Ihr Messgerät herunter.

Um festzustellen, ob Firmware-Aktualisierungen für Ihr Messgerät verfügbar sind, suchen Sie auf www.se.com nach Ihrem Messgerät.

- 1. Starten Sie DLF3000.
- 2. Klicken Sie auf Hinzufügen/Aktualisieren.
- 3. Navigieren Sie zu dem Ordner, in dem Sie die Firmware Ihres Messgeräts gespeichert haben, wählen Sie die Firmwaredatei aus und klicken Sie auf Öffnen.
- 4. Klicken Sie auf Next.
- 5. Wählen Sie ein System zur Aktualisierung aus oder klicken Sie auf **Neu**, um ein neues System zu erstellen.
- 6. Legen Sie die Kommunikationsverbindung fest (klicken Sie auf **Hinzufügen**, um eine neue Verbindung zu erstellen oder auf **Konfigurieren**, um eine vorhandene Verbindung zu aktualisieren).
 - a. Geben Sie für die Kommunikationsverbindung einen Namen in das Feld ein und wählen Sie einen Kommunikationstreiber aus der Dropdown-Liste aus (Modbus/TCP Driver oder Serial Driver).
 - b. Klicken Sie auf **Continue**.

Es wird ein Dialogfeld angezeigt, in dem Sie die Informationen zur Messgerät-Kommunikationsschnittstelle eingeben müssen.

- Wenn Sie "Modbus over TCP" für die Aktualisierung verwenden, geben Sie die IP-Adresse des Messgeräts in das Feld ein.
- Geben Sie bei einer seriellen Verbindung an, wie Ihr Messgerät angeschlossen ist (wie z. B. Kommunikationsverdrahtung, Parität, Schnittstelle, Adresse).
- c. Klicken Sie auf OK.
- 7. Legen Sie fest, welche Geräte aktualisiert werden sollen.
 - a. Klicken Sie auf Hinzufügen.
 - b. Geben Sie einen Gerätenamen ein.
 - c. Wählen Sie den Gerätetyp aus der Liste aus.
 - d. Wählen Sie den Namen der Kommunikationsverbindung aus, die mit dem Gerät verwendet wird (die Verbindung, die Sie im vorherigen Schritt festgelegt haben).
 - e. Klicken Sie auf OK.
 - f. Geben Sie die Geräteadresse und die Protokoll-Informationen ein und klicken Sie auf **OK**.
- 8. Klicken Sie auf Next.
- 9. Wählen Sie den Gerätenamen im Bereich **Download Candidate Devices** aus und klicken Sie auf die Rechtspfeiltaste, um die Auswahl in den Bereich **Download Target Devices** zu verschieben.

Wartung

- 10. Wählen Sie die Messgerät-Firmware im Feld Firmware to aus.
- 11. Klicken Sie auf **Next**.
- 12. Klicken Sie auf **Health Check**, um zu überprüfen, ob das Messgerät kommuniziert.

Unter "Health Status" wird Passed angezeigt, wenn die Kommunikation erfolgreich war.

13. Klicken Sie auf Next.

Unter **Firmware Update Group** wird der Verbindungsname, die Firmwareversion und der Status (muss "Queued" lauten) angezeigt. Unter **Group Device List** werden die Geräte angezeigt, die aktualisiert werden.

14. Klicken Sie auf Download.

HINWEIS: Es wird eine Warnung angezeigt: "Warning: Relays on PowerLogic Metering Devices will be de-energized if selected for download and will remain in this mode until a successful download is completed. Press OK to start the download".

- 15. Klicken Sie auf OK.
 - Der Status von "Firmware Upgrade Group" wechselt zu "Active" und wird für die Anzeige des aktuellen Aktualisierungsfortschritts (prozentuale Fertigstellung) aktualisiert.
 - Der Status unter "Group Device List" zeigt "Entering Download Mode" an und wechselt zu "Downloading", sobald die Firmware auf das Messgerät heruntergeladen wird. Unter "Estimated Time Remaining" wird der Firmware-Download-Fortschritt angezeigt.
 - Bei Messgeräten mit Display können Sie den Fortschritt auch über die Anzeige kontrollieren. Auf dem Messgerätdisplay wird "Download in progress" und unter "Percent Complete" eine dynamisch steigende Zahl (bis 100%) angezeigt.

Nach Abschluss der Firmware-Aktualisierung wird unter "Firmware Update Group" der Status "Complete (Passed)" angezeigt. Unter "Group Device List" wird der Status "Successful Download" angezeigt.

16. Klicken Sie auf Finished.

Um das Firmware-Download-Programm zu beenden, klicken Sie auf **Yes**, sobald Sie zum Beenden von DLF aufgefordert werden.

Diagnoseinformationen

Der Diagnosebildschirm enthält Messgerätinformationen sowie Status- und Ereignisdaten für die Fehlerbehebung.

Navigieren Sie zu **Wart > Diagn. > Messg**, um Einzelheiten zum Messgerätstatus anzuzeigen.

Navigieren Sie zu **Wart > Diagn. > Uste.**, um die Steuerspannungsinformationen anzuzeigen.

- Nicht-MID/MIR-Messgerätmodelle: Auf dem Bildschirm "Uste." wird angezeigt, wie oft die Steuerspannung des Messgeräts unterbrochen wurde, sowie Datum und Uhrzeit des letzten Auftretens.
- **MID/MIR-Messgerätmodelle:** Auf dem Bildschirm "Uste." wird angezeigt, wie oft die Steuerspannung des Messgeräts (Hilfsspannung) unterbrochen wurde, sowie die letzten Ein- und Ausschaltereignisse mit dem jeweiligen Zeitstempel.

Navigieren Sie zu **Wart > Diagn. > PhW**, um eine grafische Darstellung des vom Messgerät überwachten Stromnetzes anzuzeigen.

Steuerspannungsunterbrechungsereignis (Hilfsspannung)

Für MID/MIR-konforme Modelle.

Wenn das Messgerät ausgeschaltet und die Spannungsversorgung angelegt ist ODER wenn das Messgerät eingeschaltet ist und die Steuerspannung aus- und wieder eingeschaltet wird:

• Wenn das 4-stellige MID/MIR-Kennwort bzw. das Kennwort für Sicherh.

Verrechn. aktiviert ist, beginnt das Symbol **4**, das den Steuerspannungsverlust anzeigt, oben rechts auf dem Bildschirm zu blinken.

- Wenn das Messgerät eingeschaltet ist und die Steuerspannung auf einen Wert unterhalb des Betriebsbereichs fällt, protokolliert das Messgerät das Ereignis Letzte Aussch. mit Zeitstempel, bevor der Ausschaltvorgang ausgeführt wird.
- Wenn das Messgerät ausgeschaltet und die Steuerspannung angelegt ist, protokolliert das Messgerät das Ereignis Letzte Einsch. mit Zeitstempel, nachdem der Einschaltvorgang ausgeführt wurde.
- Wenn gemeinsam mit dem Steuerspannungsunterbrechungsereignis mehrere andere Ereignisse auftreten, dann blinkt das Symbol für Steuerspannungsunterbrechungsereignisse, da es Vorrang vor allen anderen Symbolen hat.

HINWEIS: Das Messgerät zeigt nur die Ereignisse **Anzahl Ausfälle**, **Letzte Aussch.** und **Letzte Einsch.** an. Die letzten 20 Protokolleinträge für Steuerspannungsunterbrechungsereignisse (10 **Ausschaltereignisse** und 10 **Einschaltereignisse**) können nur über die Kommunikationsschnittstelle gelesen werden.

Steuerspannungsunterbrechungsereignis (Hilfsspannung) über das Display quittieren

Für MID/MIR-Konformität bei entsprechenden Modellen.

HINWEIS: Wenn das Symbol für Steuerspannungsunterbrechungsereignisse auf dem Messgerät angezeigt wird, muss der Anlagenverwalter die Ursache und die Dauer feststellen.

Verwenden Sie den Bildschirm **Uste.**, um das Steuerspannungsunterbrechungsereignis zu quittieren.

Sie können das Steuerspannungsunterbrechungsereignis erst dann quittieren (verwerfen), wenn Sie das 4-stellige MID/MIR-Kennwort bzw. das Kennwort für **Sicherh. Verrechn.** eingegeben haben.

HINWEIS:

- Sie können Alarme und Steuerspannungsunterbrechungsereignisse nicht gleichzeitig quittieren.
- 1. Navigieren Sie zu Wart > Diagn. > Uste..
 - Die Ereignisse **Anzahl Ausfälle**, **Zul. eingesch.** und **Letzt.Stromausf.** werden mit dem Zeitstempel auf der gleichen Seite angezeigt.
- 2. Drücken Sie auf Quitt.
- Geben Sie das Kennwort f
 ür Sicherh. Verrechn. ein und dr
 ücken Sie auf OK. HINWEIS: Das standardm
 äßig eingestellte Kennwort lautet 0000.

4. Lesen Sie die Meldung Achtung! auf dem Display und drücken Sie zur Bestätigung auf Ja oder drücken Sie auf Nein, um zum vorherigen Bildschirm zurückzukehren.

Die Option Quitt und das Steuerspannungsunterbrechungsereignis-Symbol

verschwinden erst, wenn Sie auf **Ja** drücken. HINWEIS: Sie können den Wert für Anzahl Ausfälle nur über die Modbus-Kommunikationsschnittstelle auf 0 zurücksetzen. Um diese Rücksetzung durchzuführen, müssen Sie das 4-stellige MID/MIR-Kennwort bzw. das Kennwort für Sicherh. Verrechn. im Messgeräte-MMI deaktivieren.

Fehlerbehebung

LED-Anzeigen

Ein abnormales Verhalten der Status-/Kommunikations-LED kann auf mögliche Probleme mit dem Messgerät hinweisen.

Problem	Mögliche Ursache	Mögliche Lösung
Die Blinkgeschwindigkeit der LED ändert sich nicht, wenn Daten vom Hostcomputer gesendet werden.	Kommunikationsleitungen	Überprüfen Sie bei Verwendung eines Seriell/ RS485-Konverters, ob alle Leitungen vom Computer zum Messgerät richtig abgeschlossen sind.
	Internes Hardwareproblem	Führen Sie einen Kaltstart durch: Schalten Sie die Steuerspannung zum Messgerät aus und anschließend wieder ein. Wenn das Problem weiterhin besteht, wenden Sie sich an Technical Support.
Die Status-/Kommunikations- LED zeigt Dauerlicht und blinkt nicht.	Internes Hardwareproblem	Führen Sie einen Kaltstart durch: Schalten Sie die Steuerspannung zum Messgerät aus und anschließend wieder ein. Wenn das Problem weiterhin besteht, wenden Sie sich an Technical Support.
Die Status-/serielle Kommunikations-LED blinkt, aber auf dem Display wird nichts anzeigt.	Display-Einrichtungsparameter falsch eingestellt	Überprüfen Sie die Einrichtung der Display-Parameter.

Wenn das Problem nach der Fehlerbehebung nicht gelöst ist, wenden Sie sich für weitere Hilfe an den technischen Support. Achten Sie darauf, dass Sie die Angaben zur Firmwareversion, Modellbezeichnung und Seriennummer des Messgeräts zur Hand haben.

Fehlerbehebungskontrollen

Sie können mit bestimmten Kontrollen potenzielle Probleme bei der Funktion des Messgeräts ermitteln.

In der nachstehenden Tabelle werden potenzielle Probleme und ihre möglichen Ursachen sowie entsprechende Kontrollen und mögliche Lösungen beschrieben. Können Sie das Problem auch mit Hilfe der Tabelle nicht lösen, kontaktieren Sie bitte den für Sie zuständigen Vertriebsmitarbeiter von Schneider Electric.

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENÜBERSCHLAGS

- Tragen Sie geeignete persönliche Schutzausrüstung (PSA) und befolgen Sie sichere Arbeitsweisen für die Ausführung von Elektroarbeiten. Beachten Sie die Normen NFPA 70E, CSA Z462 sowie sonstige örtliche Standards.
- Dieses Gerät darf nur von qualifiziertem Personal installiert oder gewartet werden.
- Schalten Sie vor Arbeiten an oder in der Anlage, in der das Gerät installiert ist, die gesamte Stromversorgung des Geräts bzw. der Anlage ab.
- Verwenden Sie stets ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich ausgeschaltet ist.
- Gehen Sie davon aus, dass Kommunikations- und E/A-Leitungen gefährliche Spannungen führen, solange nichts anderes festgestellt wurde.
- Die Daten des Messgeräts dürfen nicht für die Überprüfung des stromlosen Zustands verwendet werden

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Potenzielle Probleme	Mögliche Ursachen	Mögliche Lösungen
Auf dem Display des Power Meters leuchtet das Wartungssymbol (Schraubenschlüssel) auf.	Das Wartungssymbol (Schraubenschlüssel) leuchtet als Hinweis auf ein Ereignis auf, das Aufmerksamkeit bedarf.	Rufen Sie Wart > Diag. auf. Es werden Ereignismeldungen angezeigt, die den Grund für das Aufleuchten des Symbols angeben. Schreiben Sie diese Ereignismeldungen auf und kontaktieren Sie den technischen Support oder den für Sie zuständigen Vertriebsmitarbeiter.
Das Display zeigt nichts an, nachdem eine Steuerspannung an das Power Meter angelegt wurde.	Das Power Meter erhält eventuell nicht die nötige Spannung.	Das Display wurde möglicherweise wegen Zeitüberschreitung ausgeschaltet. Stellen Sie sicher, dass die Phasen- und Neutralleiterklemmen des Power Meters die nötige Spannung erhalten. Überprüfen Sie, ob die Status- LED blinkt. Drücken Sie auf eine Taste, um zu prüfen, ob das Display wegen Zeitüberschreitung ausgeschaltet wurde.
Die angezeigten Daten sind nicht richtig oder entsprechen nicht den erwarteten Daten.	 Falsche Einstellwerte. Falsche Spannungseingänge. Das Power Meter ist nicht richtig verdrahtet. 	 Überprüfen Sie, ob die richtigen Werte für die Einrichtungsparameter des Power Meters eingegeben wurden (Nennwerte für Strom- und Spannungswandler, Nennfrequenz usw.). Überprüfen Sie die Spannungseingangs- klemmen (1, 2, 3, 4) des Power Meters, um sicherzugehen, dass die richtige Spannung anliegt.

Potenzielle Probleme	Mögliche Ursachen	Mögliche Lösungen
		 Überprüfen Sie, ob alle Strom- und Spannungswandler richtig angeschlossen (richtige Polarität) sowie stromführend sind. Überprüfen Sie die Messklemmen. Die empfohlenen Anzugsmomente finden Sie im Abschnitt "Verdrahtung" des Installationshandbuchs.
Fehler bei Kommunikation mit Power Meter über einen externen PC.	 Die Adresse des Power Meters stimmt nicht. Die Baudrate des Power Meters stimmt nicht. Kommunikationsleitun- gen sind nicht richtig angeschlossen. Kommunikationsleitun- gen sind nicht richtig abgeschlossen. Falsche Route- Anweisung zum Power Meter. 	 Überprüfen Sie, ob das Power Meter mit der richtigen Adresse versehen ist. Stellen Sie sicher, dass die Baudrate des Power Meters den Baudraten aller Geräte entspricht, die über die Kommunikationsschnitt- stelle mit dem Power Meter verbunden sind. Überprüfen Sie die Kommunikationsan- schlüsse des Power Meters. Überprüfen Sie, ob ein Mehrpunkt- Abschlusswiderstand richtig installiert ist. Überprüfen Sie die Route-Anweisung. Wenden Sie sich an Global Technical Support.
Die Alarm-/Energieimpuls-LED funktioniert nicht.	Sie wurde möglicherweise vom Benutzer deaktiviert.	Überprüfen Sie, ob die Alarm-/ Energieimpuls-LED richtig konfiguriert ist.

Technische Unterstützung

Unterstützung und Hilfestellung bei verlorengegangenen Kennwörtern oder anderen technischen Problemen mit dem Messgerät finden Sie unter www.se.com.

Geben Sie immer die Modellbezeichnung, die Seriennummer und die Firmwareversion Ihres Messgeräts an, wenn Sie sich – entweder per E-Mail oder telefonisch – an den technischen Support wenden.

Genauigkeitsüberprüfung

Überblick über die Messgerät-Genauigkeit

Alle Messgeräte werden im Werk gemäß den Normen von IEC (International Electrotechnical Commission) und ANSI (American National Standards Institute) geprüft und verifiziert.

Für Ihr digitales Leistungsmessgerät ist keine Neukalibrierung erforderlich. Allerdings wird bei einigen Anlagen eine abschließende Genauigkeitsüberprüfung der Messgeräte verlangt, insbesondere bei Verrechnungsmess- und Abrechnungsanwendungen.

Für eine Liste der von Ihrem Messgerät erfüllten Genauigkeitsnormen wenden Sie sich an den für Sie zuständigen Vertriebsmitarbeiter von Schneider Electric oder laden Sie sich das Prospekt für Ihr Messgerät unter www.se.com herunter.

Anforderungen an die Genauigkeitsprüfung

Bei der am häufigsten angewandten Methode zur Überprüfung der Messgerätgenauigkeit werden Spannungen und Ströme einer stabilen Spannungsquelle angelegt und die Messwerte des Messgeräts mit den Werten eines Referenzgeräts oder eines Eichzählers verglichen.

Signal- und Spannungsquelle

Die Genauigkeit des Messgeräts bleibt bei Schwankungen der Spannungs- und Stromsignalquelle erhalten, aber für seinen Energieimpulsausgang wird ein stabiles Testsignal benötigt, damit genaue Testimpulse erzeugt werden können. Der Energieimpulsmechanismus des Messgeräts braucht nach jeder Quellenanpassung ca. 10 Sekunden zur Stabilisierung.

Das Messgerät muss für die Durchführung der Genauigkeitsüberprüfung an eine Steuerspannung angeschlossen sein. Die technischen Daten zur Stromversorgung finden Sie in den Installationsunterlagen Ihres Messgeräts.

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENÜBERSCHLAGS

Überprüfen Sie, ob die Spannungsquelle für Ihr Messgerät den technischen Daten für die Stromversorgung Ihres Geräts entspricht.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

Steuergeräte

Für die Zählung und Zeitsteuerung der Impulsausgaben einer Energieimpuls-LED oder eines Digitalausgangs sind Steuergeräte erforderlich:

- Die meisten Standardprüfstände haben einen Arm, der mit optischen Sensoren für die Erfassung von LED-Impulsen ausgestattet ist (der Fotodiodenkreis wandelt das Licht in ein Spannungssignal um).
- Das Referenzgerät oder der Eichzähler verfügt normalerweise über Digitaleingänge, die von einer externen Quelle (d. h. einem Digitalausgang des Messgeräts) kommende Impulse erkennen und zählen können.

HINWEIS: Die optischen Sensoren am Prüfstand können durch starke Umgebungslichtquellen (z. B. Kamerablitzlichter, Leuchtstoffröhren, Sonnenlichtreflexionen, Flutlicht usw.) gestört werden. Dies kann zu Testfehlern führen. Verwenden Sie bei Bedarf eine Haube, um Umgebungslicht abzudecken.

Umgebungsbedingungen

Das Messgerät muss bei der Prüfung unter den gleichen Temperaturbedingungen wie die Prüfausrüstung getestet werden. Die ideale Temperatur beträgt ca. 23 °C.

Vor Beginn der Genauigkeitsüberprüfung der Energiemessung wird eine Aufwärmzeit von 30 Minuten empfohlen. Im Werk werden die Messgeräte vor der Kalibrierung auf ihre typische Betriebstemperatur aufgewärmt, um sicherzustellen, dass sie bei Betriebstemperatur ihre optimale Genauigkeit erreichen.

Für die meisten elektronischen Präzisionsgeräte ist eine Aufwärmzeit erforderlich, bevor sie ihre spezifizierten Leistungswerte erreichen.

Referenzgerät oder Eichzähler

Um die Genauigkeit der Prüfung sicherzustellen, wird die Verwendung eines Referenzgeräts bzw. eines Eichzählers mit einer spezifizierten Genauigkeit empfohlen, die 6 bis 10 Mal höher als die des zu prüfenden Messgeräts ist. Vor Beginn der Prüfung muss das Referenzgerät oder der Eichzähler gemäß den Empfehlungen des Herstellers aufgewärmt werden.

HINWEIS: Überprüfen Sie die Genauigkeit und Präzision aller Messgeräte, die bei der Genauigkeitsprüfung verwendet werden (z. B. Voltmeter, Amperemeter, Leistungsfaktormessgeräte).

Energieimpulse

Sie können die Alarm-/Energie-LED oder die Digitalausgänge des Messgeräts für Energieimpulse konfigurieren:

- Das Messgerät ist mit einer Alarm-/Energieimpuls-LED ausgestattet. In einer Energieimpulskonfiguration gibt die LED Impulse aus, die f
 ür die Bestimmung der Genauigkeit der Energiemessungen des Messger
 äts verwendet werden.
- Das Messgerät sendet die Impulse von den konfigurierten Digitalausgängen aus, mit denen dann durch einen Impulszähler die Genauigkeit der Energiemessungen des Messgeräts bestimmt wird.

Messgeräteinstellungen für die Genauigkeitsprüfung

Das Leistungssystem und andere Parameter Ihres Messgeräts müssen für die Genauigkeitsprüfung konfiguriert werden.

Messgerät-Parameter	Wert
Stromversorgungsnetz	3PH4L Stern, geerdet (3 Phasen, 4-Leiter- System, Sternschaltung, geerdet)
Energieimpulskonstante	Synchron mit Referenztestausrüstung
(Alarm-/Energieimpuls-LED oder digitaler Ausgang)	

Test für die Genauigkeitsprüfung

Die folgenden Tests sind Richtlinien für den Genauigkeitstest Ihres Messgeräts. Ihre Messgerätwerkstatt verwendet u. U. spezielle Testmethoden.

A GEFAHR

GEFAHR EINES ELEKTRISCHEN SCHLAGS, EINER EXPLOSION ODER EINES LICHTBOGENÜBERSCHLAGS

- Tragen Sie geeignete persönliche Schutzausrüstung (PSA) und befolgen Sie sichere Arbeitsweisen für die Ausführung von Elektroarbeiten. Beachten Sie die Normen NFPA 70E, CSA Z462 sowie sonstige örtliche Standards.
- Schalten Sie vor Arbeiten an oder in der Anlage, in der das Gerät installiert ist, die gesamte Stromversorgung des Geräts bzw. der Anlage ab.
- Verwenden Sie stets ein genormtes Spannungspr
 üfger
 ät, um festzustellen, ob die Spannungsversorgung wirklich ausgeschaltet ist.
- Überschreiten Sie die maximalen Grenzwerte dieses Geräts nicht.
- Überprüfen Sie, ob die Spannungsquelle für Ihr Messgerät den technischen Daten für die Stromversorgung Ihres Geräts entspricht.

Die Nichtbeachtung dieser Anweisungen führt zu Tod oder schweren Verletzungen.

- 1. Schalten Sie vor Arbeiten am Gerät oder der Anlage, in der es installiert ist, die gesamte Stromversorgung des Geräts bzw. der Anlage ab.
- 2. Verwenden Sie ein genormtes Spannungsprüfgerät, um festzustellen, ob die Spannungsversorgung wirklich ausgeschaltet ist.
- Schließen Sie die Pr
 üfspannungs- und -stromquelle an das Referenzger
 ät bzw. den Eichz
 ähler an. Vergewissern Sie sich, dass alle Spannungseing
 änge zum zu pr
 üfenden Messger
 ät parallel und alle Stromeing
 änge in Reihe angeschlossen sind.

4. Schließen Sie das Steuergerät, das für die Zählung der Eichausgangsimpulse verwendet wird, mit einer der folgenden Methoden an:

Option	Beschreibung
Energieimpuls-LED	Richten Sie den Rotlichtsensor am Standardprüfstand auf die Energieimpuls-LED aus.
Digitalausgang	Schließen Sie den Digitalausgang des Messgeräts an die Impulszählanschlüsse des Standardprüfstandes an.

HINWEIS: Beachten Sie bei der Auswahl der zu verwendenden Methode, dass Energieimpuls-LEDs und Digitalausgänge unterschiedliche Impulsraten-Grenzwerte haben.

- 5. Lassen Sie vor der Prüfung das Messgerät durch das Prüfgerät einschalten und mindestens 30 Sekunden lang mit Spannung versorgen. Dadurch werden die internen Schaltkreise des Messgeräts stabilisiert.
- 6. Konfigurieren Sie die Messgerät-Parameter zum Testen der Genauigkeitsprüfung.
- 7. Konfigurieren Sie je nach ausgewählter Methode für die Zählung der Energieimpulse die Energieimpuls-LED oder einen der Digitalausgänge des Messgeräts für die Energieimpulsausgabe. Stellen Sie die Energieimpulskonstante des Messgeräts so ein, dass sie mit dem Referenzprüfgerät synchron ist.
- 8. Führen Sie die Genauigkeitsüberprüfung an den Testpunkten durch. Prüfen Sie jeden Testpunkt mindestens 30 Sekunden lang, damit das Prüfstandsgerät eine ausreichende Anzahl von Impulsen lesen kann. Halten Sie zwischen den Testpunkten eine Verweilzeit von 10 Sekunden ein.

Erforderliche Impulsmessung für die Genauigkeitsprüfung

Bei Testgeräten zur Genauigkeitsüberprüfung müssen Sie normalerweise die Anzahl der Impulse angeben, die für eine bestimmte Testdauer benötigt werden.

In der Regel müssen Sie für das Referenzprüfgerät die Anzahl der Impulse angeben, die für eine Testdauer von "t" Sekunden benötigt werden. Die erforderliche Anzahl von Impulsen beträgt normalerweise mindestens 25 und die Testdauer beträgt mindestens 30 Sekunden.

Verwenden Sie zur Berechnung der erforderlichen Anzahl von Impulsen die folgende Formel:

Anzahl der Impulse = Ptot x K x t/3600

Dabei gilt:

- Ptot = Gesamtmomentanleistung in Kilowatt (kW)
- K = Impulskonstanteneinstellung des Messgeräts in Impulsen pro kWh
- t = Testdauer in Sekunden (normalerweise länger als 30 Sekunden)

Gesamtleistungsberechnung für die Genauigkeitsprüfung

Die Genauigkeitsprüfung gibt das gleiche Testsignal (Gesamtleistung) an den Eichzähler und an das zu prüfende Messgerät aus.

Die Gesamtleistung wird wie folgt berechnet, wobei:

- Ptot = Gesamtmomentanleistung in Kilowatt (kW)
- VLN = Phase-Neutral-Spannung am Testpunkt in Volt (V)
- I = Strom am Testpunkt in Ampere (A)
- LF = Leistungsfaktor

Das Ergebnis der Berechnung wird auf die nächste ganze Zahl aufgerundet.

Bei einem symmetrischen 3-Phasen-System in Sternschaltung:

Ptot = $3 \times VLN \times I \times LF \times 1 \text{ kW}/1000 \text{ W}$

HINWEIS: Ein symmetrisches 3-Phasen-System setzt voraus, dass die Werte für Spannung, Strom und Leistungsfaktor für alle Phasen gleich sind.

Bei einem 1-Phasen-System:

Ptot = VLN x I x LF x 1 kW/1000W

Prozentfehlerberechnung für die Genauigkeitsprüfung

Die Genauigkeitsprüfung erfordert, dass Sie den Prozentfehler zwischen dem zu testenden Messgerät und der Referenz / dem Standard berechnen.

Berechnen Sie den Prozentfehler für jeden Testpunkt mithilfe der folgenden Formel:

Energiefehler = (EM - ES) / ES x 100%

Dabei gilt:

- EM = vom zu prüfenden Gerät gemessene Energie
- ES = vom Referenzgerät bzw. vom Eichzähler gemessene Energie

HINWEIS: Wenn die Genauigkeitsüberprüfung Ungenauigkeiten Ihres Messgeräts aufzeigt, können diese u. U. durch typische Testfehlerquellen verursacht worden sein. Sind keine Testfehlerquellen vorhanden, wenden Sie sich bitte an den für Sie zuständigen Vertriebsmitarbeiter von Schneider Electric.

Testpunkte für die Genauigkeitsüberprüfung

Das Messgerät muss bei Voll- und bei Schwachlasten sowie bei nacheilenden (induktiven) Leistungsfaktoren getestet werden, damit eine Prüfung über den gesamten Messbereich des Messgeräts erfolgt.

Der Prüfstrom und die Bemessung der Spannungseingänge sind auf dem Messgerät angegeben. Die Angaben zu Nennstrom, Nennspannung und Nennfrequenz Ihres Messgeräts können Sie der Installationsanleitung oder dem Datenblatt entnehmen.

Wattstunden- Testpunkt	Beispiel-Testpunkt für Genauigkeitsüberprüfung
Volllast	100–200% Nennstrom, 100% Nennspannung und Nennfrequenz bei Leistungsfaktor Eins (1).
Schwachlast	10% Nennstrom, 100% Nennspannung und Nennfrequenz bei Leistungsfaktor Eins (1).
Induktive Last (nacheilender Leistungsfaktor)	100 % Nennstrom, 100 % Nennspannung und Nennfrequenz bei nacheilendem Leistungsfaktor 0,50 (Strom eilt der Spannung um 60° Phasenwinkel nach).
VAR-Stunden- Testpunkt	Beispiel-Testpunkt für Genauigkeitsüberprüfung
Volllast	100–200 % Nennstrom, 100 % Nennspannung und Nennfrequenz bei Leistungsfaktor 0 (Strom eilt der Spannung um 90° Phasenwinkel nach).
Schwachlast	10 % Nennstrom, 100 % Nennspannung und Nennfrequenz bei Leistungsfaktor 0 (Strom eilt der Spannung um 90° Phasenwinkel nach).
Induktive Last (nacheilender Leistungsfaktor)	100 % Nennstrom, 100 % Nennspannung und Nennfrequenz bei nacheilendem Leistungsfaktor 0,87 (Strom eilt der Spannung um 30° Phasenwinkel nach).

Überlegungen zu Energieimpulsen

Die Alarm-/Energieimpuls-LED und die Digitalausgänge des Messgeräts können Energieimpulse innerhalb spezifischer Grenzen ausgeben:

Beschreibung	Alarm-/Energieimpuls-LED	Digitalausgang
Maximale Impulsfrequenz	2,5 kHz	25 Hz
Kleinste Impulskonstante	1 Impuls pro k_h	
Größte Impulskonstante	9.999.999 Impulse pro k_h	

Die Impulsrate ist abhängig von Spannung, Strom und LF der Eingangssignalquelle sowie von der Anzahl der Phasen und von den Übersetzungsverhältnissen der Spannungs- und Stromwandler.

Wenn "Ptot" die Momentanleistung (in kW) und "K" die Impulskonstante (in Impulsen pro k_h) ist, wird die Impulsperiode folgendermaßen berechnet:

Impulsdauer (in Sekunden) = $\frac{3600}{K \times Ptot} = \frac{1}{Impulsfrequenz (Hz)}$

Überlegungen zu Spannungs- und Stromwandlern

Die Gesamtleistung ("Ptot") wird von den Werten der Spannungs- und Stromeingänge auf der Sekundärseite abgeleitet, wobei die SPW- und STW-Verhältnisse berücksichtigt werden.

Die Testpunkte werden immer auf der Sekundärseite abgenommen, unabhängig davon, ob Spannungs- oder Stromwandler verwendet werden.

Wenn Spannungs- und Stromwandler verwendet werden, müssen Sie deren Primär- und Sekundärbemessungen in die Gleichung einbeziehen. Beispiel für ein symmetrisches 3-Phasen-System in Sternschaltung mit Spannungs- und Stromwandlern:

Ptot = 3 x VLN x $\frac{VT_p}{VT_s}$ x I x $\frac{CT_p}{CT_s}$ x PF x $\frac{1 \text{ kW}}{1000 \text{ W}}$

Wobei Ptot = Gesamtleistung, SPW_p = SPW primär, SPW_s = SPW sekundär, STW_p = STW primär, STW_s = STW sekundär und LF = Leistungsfaktor ist.

Gesamtleistungsgrenzwerte

Die Gesamtleistung, die die Alarm-/Energieimpuls-LED und der Digitalausgang bewältigen können, ist begrenzt.

Gesamtleistungsgrenzwert für Alarm-/Energieimpuls-LED

Bei einer maximalen Impulskonstante (Kmax) von 9.999.999 Impulsen pro kWh und einer maximalen Impulsfrequenz für die Alarm-/Energieimpuls-LED von 83 Hz kann der Energieimpulskreis der Alarm-/Energieimpuls-LED eine Gesamtleistung (Max. Ptot) von 29,88 W bewältigen:

 Max. Ptot = 3600 x (max. Impulsfrequenz) / Kmax = 3600 x 83 / 9.999.999 = 0,02988 kW

Gesamtleistungsgrenzwert für Digitalausgang

Bei einer maximalen Impulskonstante (Kmax) von 9.999.999 Impulsen pro kWh und einer maximalen Impulsfrequenz für den Digitalausgang von 25 Hz kann der Energieimpulskreis des Digitalausgangs eine Gesamtleistung (Max. Ptot) von 9 W bewältigen:

Max. Ptot = 3600 x (max. Impulsfrequenz) / Kmax = 3600 x 25 / 9.999.999 = 0,009 kW

Typische Testfehlerquellen

Wenn Sie während der Genauigkeitsprüfung zu große Fehler bemerken, untersuchen Sie den Testaufbau und die Testverfahren, um typische Messfehlerquellen zu beseitigen:

Typische Quellen für Fehler bei der Genauigkeitsprüfung umfassen:

- Lose Anschlüsse von Spannungs- oder Stromkreisen, die oft durch abgenutzte Kontakte oder Klemmen verursacht werden. Überprüfen Sie die Klemmen der Testgeräte, die Kabel, den Testkabelbaum und das zu prüfende Messgerät.
- Die Umgebungstemperatur des Messgeräts liegt stark über/unter 23°C.
- In einer Konfiguration mit unsymmetrischen Phasenspannungen ist ein potenzialfreier (nicht geerdeter) Neutralleiterspannungsanschluss vorhanden.
- Eine unzureichende Steuerspannung am Messgerät verursacht eine Zurücksetzung des Messgeräts während des Testverfahrens.
- Der optische Sensor wird durch Umgebungslicht gestört oder weist Empfindlichkeitsprobleme auf.
- Eine instabile Spannungsquelle verursacht Energieimpulsschwankungen.
- Falscher Testaufbau: nicht alle Phasen wurden am Referenzgerät oder am Eichzähler angeschlossen. Alle am zu prüfenden Messgerät angeschlossenen Phasen müssen auch am Referenzmessgerät bzw. Eichzähler angeschlossen werden.
- Im zu prüfenden Messgerät ist Feuchtigkeit (kondensierende Feuchtigkeit) oder Schmutz vorhanden.

MID/MIR-Konformität

Geschützte Einrichtungsparameter und Funktionen

Das Messgerät hat Funktionen und Einstellungen, die nicht geändert werden können, wenn die Verrechnungssicherheit aktiviert ist. Um Modifikationen an verrechnungsbezogenen Einstellungen und Daten im Messgerät zu verhindern, können einige Funktionen und Parameter im Messgerät nach Aktivierung der Verrechnungssicherheit nicht bearbeitet werden.

Geschützte Einrichtungsparameter

Einstellungen	Geschützter Status	Beschreibung
Stromnetzeinstellungen	Ja	Wenn das Messgerät gesichert ist, können keine Stromnetzeinstellungen (z. B. Stromnetztyp, SPW- und STW-Anschlüsse, Primär- und Sekundärwerte für Spannungs- und Stromwandler, Netzfrequenz und Phasendrehrichtung) geändert werden.
		HINWEIS: Für MID-/MIR Konformität muss das Stromnetz entweder auf "3PH4L Stern, geerdet" (dreiphasig, 4 Leiter, Sternschaltung, geerdet) oder "3PH3L Drei., n. geerd." (dreiphasig, 3 Leiter, Dreieckschaltung, nicht geerdet) eingestellt sein.
Messgerätbezeichnung	Ja	Wenn die Sicherheit der Verrechnungsmessung aktiviert ist, kann die Messgerätbezeichnung nicht geändert werden.
Zeiteinstellungen des Messgeräts	Ja	Wenn die Sicherheit der Verrechnungsmessung aktiviert ist, kann das Datum des Messgeräts nicht geändert werden.
Energieimpulse	Ja	Die Alarm-/Energieimpuls-LED an den MID/ MIR-konformen Modellen ist dauerhaft auf Energieimpulse eingestellt und kann nicht deaktiviert oder für Alarme verwendet werden. Auch alle anderen Einrichtungsparameter für die Energieimpuls-LED sind dauerhaft eingestellt und können nicht geändert werden.
Kennwort für die Energierücksetzung	Ja	Wenn die Sicherheit der Verrechnungsmessung aktiviert ist, kann das Kennwort für die Energierücksetzung nicht geändert werden.

Geschützte Funktionen

Nach der Sperrung des Messgeräts sind die folgenden Rücksetzungen deaktiviert:

- Globale Resets: Messgerätinitialisierung (alle) und Energien
- Einzel-Resets: Energie und Mehrfachtarif

Eine vollständige Liste der geschützten Funktionen und Einstellungen finden Sie in der Modbus-Registerliste für Ihr Messgerät unter www.se.com.

Messgerät sperren und freigeben

Nach der Initialisierung des Messgeräts müssen Sie es für die Konformität mit den MID/MIR-Normen sperren.

Bevor Sie Ihr Messgerät sperren:

- Stellen Sie sicher, dass Sie die gesamte notwendige Konfiguration abgeschlossen haben.
- Führen Sie eine Messgerät-Initialisierungsrückstellung durch, um zuvor gesammelte Messgerätedaten zu löschen.

Ein verlorenes Sperrkennwort kann nicht wiederhergestellt werden.

HINWEIS

DAUERHAFT GESPERRTES GERÄT

Vermerken Sie die Benutzer- und Kennwort-Informationen für Ihr Messgerät an einem sicheren Ort.

Die Nichteinhaltung dieser Anweisungen kann zu Datenverlust führen.

- 1. Navigieren Sie zu Wart > Einr. > Messgerät > Sperren.
- 2. Drücken Sie auf Bearb, um die Sperrung zu aktivieren bzw. zu deaktivieren.
- 3. Geben Sie Ihr Sperrkennwort ein.

HINWEIS: Das standardmäßig eingestellte Kennwort lautet 0000.

- 4. Drücken Sie auf + und -, um zwischen Aktiv und Inaktiv zu wechseln.
- 5. Drücken Sie auf OK, um die Option auszuwählen.
- 6. Wählen Sie **Ja** aus, um die ausgewählte Option zu bestätigen und den Bildschirm zu verlassen.
- 7. Das Sperrkennwort muss unbedingt notiert und an einem sicheren Ort aufbewahrt werden.

Nach dem Aktivieren der Sperrung wird links oben auf dem Bildschirm ein Schlosssymbol angezeigt.

HINWEIS: Das Sperrkennwort muss unbedingt notiert und an einem sicheren Ort aufbewahrt werden. Ein verlorenes Sperrkennwort kann nicht wiederhergestellt werden.

Sperrkennwort einrichten

Sie können das Sperrkennwort des Messgeräts ändern.

HINWEIS: Sie können das Sperrkennwort des Messgeräts nicht ändern, wenn die Sperrung aktiv ist. Um das Kennwort zu ändern, vergewissern Sie sich zuerst, dass die Sperrung inaktiv ist.

Ein verlorenes Sperrkennwort kann nicht wiederhergestellt werden.

DAUERHAFT GESPERRTES GERÄT

Vermerken Sie die Benutzer- und Kennwort-Informationen für Ihr Messgerät an einem sicheren Ort.

Die Nichteinhaltung dieser Anweisungen kann zu Datenverlust führen.

- 1. Navigieren Sie zu Wart > Einr. > HMI > Kennw.
- 2. Drücken Sie die Abwärtstaste, um zum Bildschirm **Kennwörter > Sicherh.** Verrechn.. zu scrollen.
- 3. Drücken Sie auf Bearb, um ein Kennwort auszuwählen.

- 4. Drücken Sie auf +, um die aktive Ziffer zu erhöhen und eine Zahl zwischen 0 und 9 auszuwählen.
- 5. Drücken Sie auf den Linkspfeil, um nach links zur nächsten Ziffer zu wechseln.
- 6. Setzen Sie diesen Vorgang fort, bis alle Werte ausgewählt sind, und drücken Sie anschließend auf **OK**, um das Kennwort zu speichern.
- 7. Drücken Sie auf Ja, um die Änderungen zu speichern.

Gerätespezifikationen

Mechanische Kenndaten

IP-Schutzklasse (IEC 60529)	Anzeige: IP54 (Aufrüstung auf IP65 mit optionalem Zubehörsatz METSEIP65OP96X96FF)
	Messgerätgehäuse: IP30
Montageposition	Vertikal
Displaytyp	Grafik-LCD-Anzeige, einfarbig, Auflösung 128 x 128
Display-Hintergrundbeleuchtung	Weiße LED
Anzeigbarer Bereich	67 x 62,5 mm
Gewicht	430 g
Abmessungen (B x H x T) [Überstand vom Schaltschrank]	96 x 96 x 72 mm (Messgerättiefe ab Gehäuse-Montageflansch) [13 mm]
Schalttafelstärke	Max. 6 mm

Elektrische Kenndaten

Messgenauigkeit

- Messungstyp: Echt-Effektivwerte im 3-Phasen-Wechselstromnetz (3P, 3P + N); 64 Abtastungen pro Periode, Dauermessung
- IEC 61557-12: 2021, BS/EN 61557-12: PMD/[SD|SS]/K70/0.5 (ab Firmwareversion 1.1.1)

Messungstyp	Genauigkeitsklasse nach IEC 61557-12: 2021, BS/EN 61557-12 (ab Firmwareversion 1.1.1)	Fehler
Wirkenergie	Klasse 0.5S (Klasse 0.5S nach IEC 62053-22: 2020, BS/EN 62053-22 bei 5 A I _{Nennwert} [für 1 A I _{Nennwert} , wenn I > 0,15 A])	± 0,5 %
Blindenergie	Klasse 2 (Klasse 2 nach IEC 62053-23: 2020, BS/ EN 62053-23 bei 5 A I _{Nennwert} [für 1 A I _{Nennwert} wenn I > 0,15 A])	± 2 %
Scheinenergie	Klasse 0.5	± 0,5 %
Wirkleistung	Klasse 0.5	± 0,5 %
Blindleistung	Klasse 2	±2%
Scheinleistung	Klasse 0.5	± 0,5 %
Strom	Klasse 0.5	± 0,5 %
Spannung (L-N)	Klasse 0.5	± 0,5 %
Frequenz	Class 0,05	± 0,05 %
Leistungsfaktor	Klasse 0.5	± 0,005 Zählung

Leistungsqualitätsgenauigkeit

Messungstyp	Genauigkeitsklasse nach IEC 61557-12: 2021, BS/EN 61557-12 (ab Firmwareversion 1.1.1)	Fehler
Spannungsoberwellen	Klasse 5	± 5 %
Spannungsklirrfaktor (THD oder thd)	Klasse 5	± 5 %
Stromoberwellen	Klasse 5	±5%
Stromklirrfaktor	Klasse 5	± 5 %

Spannungseingänge

Maximale VT/PT primär	1,0 MV AC
Festgelegter Genauigkeitsbereich	20–400 V L-N / 35–690 V L-L (Stern) oder 35–600 V L-L (Dreieck)

Spannungseingänge (Fortsetzung)

	UL-gelistet bis 347 V L-N / 600 V L-L
	(absoluter Bereich: 35 V L-L bis 760 V L-L)
Überlast	460 V L-N bzw. 800 VL-L
Impedanz	5 ΜΩ
Bemessungsstoßspannung	6 kV für 1,2 μs
Frequenz	Gemessen: 45–65 Hz
	Nennwert: 50/60 Hz
Bürde	< 0,2 VA bei 240 V AC L-N

Stromeingänge

STW sekundär	Nennwert: 5 A oder 1 A
Gemessener Strom	5 mA bis 8,5 A
Einschaltstrom	5 mA
Zulässige Überlastung	20 A Dauerstrom
	50 A bei 10 s/h
	500 A bei 1 s/h
Impedanz	< 0,3 mΩ
Frequenz	Gemessen: 45–65 Hz
	Nennwert: 50/60 Hz
Bürde	< 0,026 VA bei 8,5 A

AC-Steuerspannung

AC-Nennspannung	277 V L-N (Bereich: 100–277 V L-N ± 10 %)
	415 V L-L (Bereich: 100–415 V L-L ± 10 %)
Bürde	Max. 5 W/11 VA bei 415 V AC
Installationskategorie	Klasse CAT III 300 V L-N nach BS/ EN/ IEC/ UL 61010-1: 2010 + A1: 2019
Nennfrequenz	50/60 Hz (Bereich: 45 bis 65 Hz)
Haltezeit	80 ms typisch bei 120 V AC und maximaler Bürde
	100 ms typisch bei 230 V AC und maximaler Bürde
	100 ms typisch bei 415 V AC und maximaler Bürde

DC-Steuerspannung

DC-Nennspannung	250 V (Bereich: 125–250 V ± 20 %)
Bürde	< 4 W bei 250 V DC
Haltezeit	50 ms typisch bei 125 V DC und maximaler Bürde

Relaisausgänge

Nummer	2 (ausgewählte Modelle)
Maximale Ausgangsfrequenz	Max. 0,5 Hz (1 Sekunde EIN / 1 Sekunde AUS – Mindestzeiten)
Schaltstrom	250 V AC bei 8,0 A, 25.000 Perioden, ohmsch
	30 V DC bei 2,0 A, 75.000 Perioden, ohmsch
	30 V DC bei 5,0 A, 12.500 Perioden, ohmsch
Isolation	2,5 kVeff.

Digitalausgänge

Nummer	2
Maximale Lastspannung	40 V DC
Maximaler Laststrom	20 mA
Last-Widerstand	Max. 50 Ω
Impulsfrequenz	≤ 25 Hz
Messgerätkonstante	Von 1 bis 9.999.999 Impulse pro k_h (k_h = kWh, kVARh oder kVAh – je nach ausgewähltem Energieparameter)
Impulsdauer	50 % Taktdauer
Kriechstrom	0,3 Mikroampere
Isolation	5 kVeff

Statuseingänge

Nummer	2
Spannung im AUS-Zustand	0-4 V DC
Spannung im EIN-Zustand	18,5–36 V DC
Frequenz	2 Hz (min. T EIN = min. T AUS = 250 ms)
Eingangswiderstand	110 kΩ
Isolation	5 kVeff
Antwortzeit	20 ms
Frittspannungsausgang	24 V DC/max. 8 mA
Eingangsbürde	2 mA bei 24 V DC

Umgebungsbedingungen

Betriebstemperatur	Messgerät: –25 bis +70 °C
	Anzeige: –20 bis +70 °C
	Displayfunktionen bis –25 °C mit verringerter Leistung
Lagertemperatur	-40 bis +85 °C
Luftfeuchtigkeit	Betrieb: 5–95 % relative Luftfeuchtigkeit bei 50 °C (nicht kondensierend)
	Lagerung: 5–80 % relative Luftfeuchtigkeit, nicht kondensierend
	Maximaler Taupunkt 37 °C
Verschmutzungsgrad	2
Aufstellungshöhe	2000 m CAT III / 3000 m CAT II
Standort	Zur Verwendung in einer stationären Schalttafel in Innenräumen
	Muss dauerhaft angeschlossen und feststehend sein
Produktlebensdauer	> 15 Jahre, 45 °C, relative Luftfeuchtigkeit 60 %

LEDs

LED-Anzeigen

Status-/Kommunikationsaktivität	Grüne LED
Alarm-/Energieimpuls-LED	Orange LED

Alarm-/Energieimpuls-LED

Тур	Orange LED, optisch
Maximale Impulsfrequenz	50 Hz
Impulsdauer	50 % Taktdauer (min. 200 μs EIN-Zeit)
Messgerätkonstante	10.000 Impulse pro kWh/kVARh
	Konfigurierbar von 1 bis 9999999 Impulse pro k_h (k_h = kWh, kVARh oder kVAh)
	(Bei MID/MIR-Messgerät-Modellen auf 10.000 Impulse pro kWh eingestellt)
Wellenlänge	590 bis 635 nm

EMV (elektromagnetische Verträglichkeit)

Produktnormen	IEC 61557-12 (IEC 61326-1), IEC 62052-11 und EN50470
Störfestigkeit gegen elektrostatische Entladung	IEC 61000-4-2
Störfestigkeit gegen elektromagnetische Störungsfelder	IEC 61000-4-3
Störfestigkeit gegen schnelle Transienten	IEC 61000-4-4
Störfestigkeit gegen Spannungsspitzen	IEC 61000-4-5
Störfestigkeit gegen Spannungseinbrüche und -unterbrechungen	IEC 61000-4-11
Störfestigkeit gegen Magnetfelder	IEC 61000-4-8
Störfestigkeit gegen netzgebundene Störungen, 150 kHz bis 80 MHz	IEC 61000-4-6
Verstrahlte und eingeleitete Emissionen	Klasse B gemäß Teil 15 der FCC-Bestimmungen, EN55022 Klasse B

Sicherheits- und Produktnormen

Sicherheit	BS / EN / IEC / UL 61010-1: 2010 + A1: 2019	
Schutzklasse	Schutzklasse II	
	Doppelisolierung der für Benutzer zugänglichen	Teile
Normenkonformität	IEC 62052-31: 2015	BS/ EN 62052-31
	IEC 62052-11: 2020	BS/ EN 62052-11
	IEC 62053-22: 2020	BS/ EN 62053-22
	IEC 62053-23: 2020	BS/ EN 62053-23
	IEC 61557-12: 2021	BS/ EN 61557-12
		BS/ EN 50470-1
		BS/ EN 50470-3

MID/MIR-Konformität

Für die MID-/MIR Messgerät-Modelle (PM5331 und PM5341) gelten zusätzliche Spezifikationen.

Geltende MID/MIR-Normen und -Klassen	BS/ EN 50470-1 Klasse C BS/ EN 50470-3 Klasse C
Art des Messgeräts	Statischer Wattstundenzähler
Verwendungszweck	Nur für Innenraumanwendungen, dauerhaft installiert für Anwendungen in Wohn-, Gewerbe- und Leichtindustriebereichen, die nur geringfügigen Erschütterungen und Stößen ausgesetzt sind
Mechanische Umgebungsbedingungen	M1
Elektromagnetische Umgebungsbedingungen (EMV)	E2
Anwendbare Messungen	C (kWh)
Spannung an den Spannungsklemmen	 Dreiphasig, 4-Leiter-System, Sternschaltung, geerdet: 3 x 63,5 (110) bis 3 x 277 (480) V AC Dreiphasig, 3-Leiter-System, Dreiecksschaltung, nicht geerdet: 3 x 110 bis 3 x 480 V L-L
Strombemessung (Imin – Iref [Imax])	0,05–5(6) A
Frequenz des Stromversorgungsnetzes	50 Hz
Stoßspannungsbemessung	6 kV
Wechselspannungsbemessung	4 KV

RS-485-Kommunikationsschnittstelle

Nur für PM5310 / PM5330 / PM5331

Anzahl der Schnittstellen	1
Maximale Kabellänge	1219 m
Maximale Anzahl an Geräten (Einheitlasten)	Bis zu 32 Geräte am gleichen Bus
Parität	Gerade, ungerade, keine (1 Stoppbit für ungerade bzw. gerade Parität; 2 Stoppbits für keine Parität) Baudrate
Baudrate	9600, 19200, 38400 baud
Protokoll	Modbus RTU, Modbus ASCII (7- oder 8-Bit), JBUS
Isolation	2,5 kVeff, Doppelisolierung

Ethernet-Kommunikationsschnittstelle

Nur für PM5320 / PM5340 / PM5341

Anzahl der Schnittstellen	1
Datenrate	Bis zu 100 MBit/s
Protokoll	Modbus TCP und BACnet/IP

Echtzeituhr

Uhrzeitabweichung	~ 0,4 s pro Tag (typisch)
Batteriepufferzeit	3 Jahre ohne Steuerspannung (typisch)

Konforme Beschichtung

Die in diesem Produkt verbauten PCBAs werden mit einer durch UL zugelassen, konformen Beschichtungschemikalie behandelt.

Chinesische Normenkonformität

Dieses Produkt erfüllt die folgenden chinesischen Normen:

BS/ EN/ IEC 62053-22 Electricity metering equipment (a.c.) - Particular requirements - Part 22: Static meters for active energy (classes 0,2 S and 0,5 S)

BS/ EN/ IEC 61557-12 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 12: Performance measuring and monitoring devices

GB/T 22264.7-2008 安装式数字显示电测量仪表 第7部分:多功能仪表的特殊要求

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison Frankreich

+ 33 (0) 1 41 29 70 00

www.se.com

Da Normen, Spezifikationen und Bauweisen sich von Zeit zu Zeit ändern, sollten Sie um Bestätigung der in dieser Veröffentlichung gegebenen Informationen nachsuchen.

© 2023 - Schneider Electric. Alle Rechte vorbehalten

EAV15107-DE11