# **TeSys Active**

# **TeSys Tera Motor Management System**

# **User Guide**

**TeSys** offers innovative and connected solutions for motor starters.

DOCA0257EN-00 03/2025





# Legal Information

The information provided in this document contains general descriptions, technical characteristics and/or recommendations related to products/solutions.

This document is not intended as a substitute for a detailed study or operational and site-specific development or schematic plan. It is not to be used for determining suitability or reliability of the products/solutions for specific user applications. It is the duty of any such user to perform or have any professional expert of its choice (integrator, specifier or the like) perform the appropriate and comprehensive risk analysis, evaluation and testing of the products/solutions with respect to the relevant specific application or use thereof.

The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this document are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owner.

This document and its content are protected under applicable copyright laws and provided for informative use only. No part of this document may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric.

Schneider Electric does not grant any right or license for commercial use of the document or its content, except for a non-exclusive and personal license to consult it on an "as is" basis.

Schneider Electric reserves the right to make changes or updates with respect to or in the content of this document or the format thereof, at any time without notice.

To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this document, as well as any non-intended use or misuse of the content thereof.

# **Table of Contents**

| Safety Information                                  | 7  |
|-----------------------------------------------------|----|
| About the Document                                  | 8  |
| Precautions                                         | 11 |
| Introducing the TeSys Tera Motor Management System  | 13 |
| Presentation of TeSys Tera Motor Management System  |    |
| TeSys Master Range                                  |    |
| TeSys Tera System                                   | 15 |
| Technical Characteristics                           |    |
| Components of TeSys Tera System                     |    |
| Load Current Transformers                           | 26 |
| Ground Current Transformers                         |    |
| Description of TeSys Tera Motor Management System   |    |
| LTMT Main Unit                                      |    |
| Communication Ports                                 |    |
| LTMTCT/LTMTCTV Sensor Module                        |    |
| LTMT Expansion Unit                                 |    |
| LTMTCUF Control Operator Unit                       |    |
| Settings of TeSys Tera Motor Management System      |    |
| Name Plate<br>Device Configuration                  |    |
| System Settings                                     |    |
|                                                     |    |
| Metering Functions                                  |    |
| Overview<br>Current Measurement                     |    |
| RMS Current                                         |    |
| Ground Current                                      |    |
| Average Current                                     |    |
| Current Imbalance                                   |    |
| Current Phase Sequence                              |    |
| Voltage Measurement                                 |    |
| RMS Voltage                                         |    |
| Average Voltage                                     | 59 |
| Voltage Imbalance                                   | 60 |
| Voltage Phase Sequence                              | 61 |
| Frequency                                           | 62 |
| Power and Energy Measurement                        |    |
| Active Power, Reactive Power, and Apparent Power    |    |
| Active Energy, Reactive Energy, and Apparent Energy |    |
| Power Factor                                        |    |
| THD Metering for Current and Voltage                |    |
| Temperature Measurement                             |    |
| Monitoring Functions                                |    |
| Overview                                            |    |
| Thermal Memory                                      |    |
| Thermal Time to Trip                                |    |
| Thermal Time to Cool                                |    |
| Motor History                                       |    |

| Motor Status                                                      | 76  |
|-------------------------------------------------------------------|-----|
| Inhibit Status                                                    | 77  |
| System Self-Diagnostic                                            | 79  |
| Test Functions                                                    | 80  |
| Communication Loss                                                | 83  |
| HMI Communication Loss                                            | 84  |
| Monitoring Records                                                | 85  |
| Protection Functions                                              |     |
| Protection Settings                                               |     |
| Function Parameter                                                |     |
| Reset Modes                                                       | 91  |
| Hysteresis Settings                                               | 92  |
| Motor Protection Functions                                        | 93  |
| Thermal Overload                                                  | 94  |
| Locked Rotor                                                      |     |
| Stalled Rotor                                                     |     |
| Temperature Protection                                            |     |
| Current Protection Functions                                      |     |
| Definite Time Overcurrent                                         |     |
| Normal Inverse Overcurrent                                        |     |
| Short Time Overcurrent                                            |     |
| Phase Under Current                                               |     |
| Calculated Ground Fault                                           |     |
| Measured Ground Fault                                             |     |
| Current Imbalance                                                 |     |
| Current Phase Reversal                                            |     |
| Current Phase Loss                                                |     |
| Voltage Protection Functions                                      |     |
| Phase Under Voltage                                               |     |
| Phase Over Voltage                                                |     |
| Voltage Imbalance                                                 |     |
| Voltage Phase Reversal                                            |     |
| Voltage Phase Loss                                                |     |
| Power Protection Functions                                        |     |
| Over Frequency                                                    |     |
| Under Frequency                                                   |     |
| Over Power                                                        |     |
| Under Power                                                       |     |
| Under Power Factor                                                |     |
| Digital Input Interlock                                           |     |
| Motor Control Functions                                           |     |
| Motor Control Station                                             |     |
| Overview                                                          |     |
|                                                                   |     |
| Working Principle of the Motor Starters<br>Motor Starter Settings |     |
| Operating Modes                                                   |     |
|                                                                   |     |
| Digital Inputs<br>Digital Outputs                                 |     |
| Digital Outputs<br>Motor Starter Functions                        |     |
| Direct Online                                                     |     |
| Reverse Direct Online                                             |     |
|                                                                   | 140 |

| Star Delta                     |  |
|--------------------------------|--|
| Forced Start Function          |  |
| Single Phase Motor Application |  |
| Motor Control Function         |  |
| Maximum Number of Starts       |  |
| Voltage Dip Management         |  |
| Load Shedding                  |  |
| Auto Restart                   |  |
| Anti-Backspin Timer            |  |
| Stop Error Detection           |  |
| Excessive Start Time           |  |
| Block Output                   |  |
| Device internal protection     |  |
| Appendices                     |  |
| Trip Code                      |  |
| Event Code                     |  |
| Device Internal Error Code     |  |
| Input Source                   |  |
| •                              |  |

# **Safety Information**

# **Important Information**

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.



The addition of this symbol to a "Danger" or "Warning" safety label indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.



This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

#### 

**DANGER** indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

#### **WARNING**

**WARNING** indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

#### 

**CAUTION** indicates a hazardous situation which, if not avoided, **could result** in minor or moderate injury.

#### NOTICE

NOTICE is used to address practices not related to physical injury.

## **Please Note**

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

# **About the Document**

## **Document Scope**

This guide provides complete information necessary to use the TeSys Tera system which includes:

- LTMT main unit
- LTMTCT/LTMTCTV sensor modules
- · LTMT expansion modules
- LTMTCUF control operator unit

The purpose of this guide is to:

- Provide information necessary to configure and operate the TeSys Tera system and its components
- Describe the metering, monitoring, protection, and control functions of the TeSys Tera system

This guide is intended for:

- · Design engineers
- · System integrators
- · System operators

**NOTE:** The product image captured in this guide is for Ethernet variant of the TeSys Tera system, which will be available in the future releases. Please contact your local Schneider Electric representative concerning its availability.

## **Validity Note**

This document is valid for the following certified components of the TeSys Tera system:

- LTMTMFM: LTMT main unit with Modbus RTU protocol, 100-240 Vac/Vdc
- LTMTMBD: LTMT main unit with Modbus RTU protocol, 24 Vdc
- LTMTPFM: LTMT main unit with PROFIBUS DP protocol, 100-240 Vac/Vdc
- LTMTPBD: LTMT main unit with PROFIBUS DP protocol, 24 Vdc
- LTMTCT3T: LTMT Horizontal Sensor Module with current transformer, current range = 0.3–3 A
- LTMTCT25T: LTMT Horizontal Sensor Module with current transformer, current range = 2.5–25 A
- LTMTCT100T: LTMT Horizontal Sensor Module with current transformer, current range = 10–100 A
- LTMTCTV3T: LTMT Horizontal Sensor Module with current and voltage transformers, current range = 0.3–3 A, voltage range = 60–690 Vac
- LTMTCTV25T: LTMT Horizontal Sensor Module with current and voltage transformers, current range = 2.5–25 A, voltage range = 60–690 Vac
- LTMTCTV100T: LTMT Horizontal Sensor Module with current and voltage transformers, current range = 10–100 A, voltage range = 60–690 Vac
- LTMTCTV3UT: LTMT Horizontal Sensor Module with current and voltage transformers, current range = 0.3–3 A, voltage range = 60–600 Vac
- LTMTCTV25UT: LTMT Horizontal Sensor Module with current and voltage transformers, current range = 2.5–25 A, voltage range = 60–600 Vac
- LTMTCTV100UT: LTMT Horizontal Sensor Module with current and voltage transformers, current range = 10–100 A, voltage range = 60–600 Vac
- LTMTIN42FM: LTMT expansion unit with four digital inputs and two digital outputs, 100–240 Vac/Vdc

- LTMTIN42BD: LTMT expansion unit with four digital inputs and two digital outputs, 24 Vdc
- LTMT9RJ1015: LTMT main unit to LTMTCT/LTMTCTV sensor module RJ11 connector cable 0.15 m (5.9 in) in length
- LTMT9RJ401: LTMT main unit to LTMT expansion unit RJ45 connector cable 0.1 m (3.9 in) in length
- LTMT9RJ105:LTMT main unit to LTMTCT/LTMTCTV sensor module RJ11 connector cable 0.5 m (19.6 in) in length
- LTMTCUF: Control Operator Unit
- LTMT9RJ102: LTMT main unit to LTMTCT/LTMTCTV sensor module RJ11 connector cable 0.2 m (7.87 in) in length
- LTMT9EX10: LTMT main unit to LTMT expansion module RJ45 connector cable 1 m (39.37 in) in length
- LTMT9CU10S: LTMT main unit to LTMTCUF control operator unit cable 1 m (39.37 in) in length
- LTMT9CU30S: LTMT main unit to LTMTCUF control operator unit cable 3 m (118.11 in) in length

The certification of other components of the TeSys Tera system mentioned in this document is in progress.

The availability of some functions described in this document depends on the communication protocol used and the physical modules installed on the TeSys Tera system.

#### **General Cybersecurity Information**

In recent years, the growing number of networked machines and production plants has seen a corresponding increase in the potential for cyber threats, such as unauthorized access, data breaches, and operational disruptions. You must, therefore, consider all possible cybersecurity measures to help protect assets and systems against such threats.

To help keep your Schneider Electric products secure and protected, it is in your best interest to implement the cybersecurity best practices as described in the Cybersecurity Best Practices document.

Schneider Electric provides additional information and assistance:

- Subscribe to the Schneider Electric security newsletter.
- Visit the Cybersecurity Support Portal web page to:
  - Find Security Notifications.
  - Report vulnerabilities and incidents.
- Visit the Schneider Electric Cybersecurity and Data Protection Posture web page to:
  - Access the cybersecurity posture.
  - Learn more about cybersecurity in the cybersecurity academy.
  - Explore the cybersecurity services from Schneider Electric.

#### **Environmental Data**

For product compliance and environmental information, refer to the Schneider Electric Environmental Data Program.

# **Available Languages of the Document**

The document is available in these languages:

English

# **Related Documents**

| Title of documentation                                               | Description                                                                                                                                                                                     | Reference number |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| TeSys Tera Motor Management System<br>Catalog                        | <ul> <li>The catalog</li> <li>Describes the TeSys Tera system</li> <li>Contains the TeSys Tera technical characteristics</li> </ul>                                                             | LVCATENTER       |
| TeSys Tera Motor Management System<br>Installation Guide             | This guide describes the installation,<br>commissioning, and maintenance of the LTMT<br>main unit, LTMTCT/LTMTCTV sensor modules,<br>LTMT expansion unit, and LTMTCUF control<br>operator unit. | DOCA0356EN       |
| TeSys Tera Motor Management System<br>Modbus RTU Communication Guide | This guide describes the Modbus RTU network protocol communication of the LTMT main unit.                                                                                                       | DOCA0355EN       |
| TeSys Tera Motor Management System<br>PROFIBUS DP Guide              | This guide describes the PROFIBUS DP network protocol communication of the LTMT main unit.                                                                                                      | DOCA0256EN       |
| TeSys Tera Motor Management System<br>LTMTCUF User Guide             | This guide describes how to install, configure, and use the LTMTCUF control operator unit.                                                                                                      | DOCA0233EN       |
| TeSys Tera Motor Management System<br>DTM Library Online Help Guide  | This guide describes the TeSys Tera DTM library<br>which allows the customization of the control<br>functions of the TeSys Tera Motor Management<br>System.                                     | DOCA0275EN       |
| TeSys Tera Motor Management System<br>DTM Library Release Note       | This document provides important information about the TeSys Tera DTM                                                                                                                           | DOCA0279EN       |
| TeSys Tera Motor Management System<br>Firmware Release Note          | This guide provides important information about<br>the TeSys Tera system firmware packages and<br>provides summary of new features and<br>enhancement.                                          | DOCA0276EN       |

To find documents online, visit the Schneider Electric download center (www.se.com/ww/en/download/).

# Information on Non-Inclusive or Insensitive Terminology

As a responsible, inclusive company, Schneider Electric is constantly updating its communications and products that contain non-inclusive or insensitive terminology. However, despite these efforts, our content may still contain terms that are deemed inappropriate by some customers.

## **Trademarks**

*QR Code* is a registered trademark of DENSO WAVE INCORPORATED in Japan and other countries.

# **Precautions**

Read and understand the following precautions before performing any procedures in this guide.

## **A A DANGER**

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- This equipment must only be installed and serviced by qualified electrical personnel.
- Turn off all power supplying to this equipment before working on this equipment.
- Use only the specified voltage when operating this equipment and any associated products.
- · Always use a properly rated voltage sensing device to confirm power is off.
- · Use appropriate interlocks where personnel and/or equipment hazards exist.
- Power line circuits must be wired and protected in compliance with local and national regulatory requirements.
- Apply appropriate personal protective equipment (PPE) and follow safe electrical work practices per NFPA 70E, NOM-029-STPS, or CSA Z462 or local equivalent.

Failure to follow these instructions will result in death or serious injury.

## 

#### UNINTENDED EQUIPMENT OPERATION

- Do not disassemble, repair, or modify this equipment. There are no user serviceable parts.
- Install and operate this equipment in an enclosure appropriately rated for its intended application environment.
- Each implementation of this equipment must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

## **California Proposition 65 Warning**

 $\wedge$ 

WARNING: This product can expose you to chemicals such as, Humiseal 1A33 Polyurethane, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to <u>www.P65Warnings.</u> <u>ca.gov</u>.

#### **Qualified Personnel**

Only appropriately trained personnel who are familiar with and understand the content of this guide and all other related product documentation are authorized to work on and with this product.

The qualified personnel must be able to detect possible hazards that may arise from modifying parameter values and generally from mechanical, electrical, or electronic equipment. The qualified personnel must be familiar with the standards, provisions, and regulations for the prevention of industrial accidents, which they must observe when designing and implementing the system.

The use and application of the information contained in this guide requires expertise in the design and programming of automated control systems. Only you,

the user, panel builder, or integrator, can be aware of all the conditions and factors present during installation, setup, operation, and maintenance of a process plant or machine, and can therefore determine the automation and associated equipment and the related safeties and interlocks which can be effectively and properly used when selecting automation and control equipment, and any other related equipment or software, for a particular application. You must also consider applicable local, regional, or national standards and/or regulations.

Pay particular attention to conformance with any safety information, electrical requirements, and normative standards that apply to your process plant or machine in the use of this equipment.

## **Intended Use**

The products described in this guide, together with software, accessories, and options, are a part of starters for low-voltage electrical loads, intended for industrial use according to the instructions, directions, examples, and safety information contained in the present document and other supporting documentation.

The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements, and the technical data.

Before using the product, you must perform a risk assessment of the planned application. Based on the results, appropriate safety-related measures must be implemented.

Since the product is used as a component of a process plant or machine, you must ensure the safety of personnel by means of the overall system design.

Operate the product only with the specified cables and accessories. Use only genuine accessories and spare parts.

Any use other than the use explicitly permitted is prohibited and can result in unanticipated hazards.

# Introducing the TeSys Tera Motor Management System

#### What's in This Part

| Presentation of TeSys Tera Motor Management System | .14 |
|----------------------------------------------------|-----|
| Description of TeSys Tera Motor Management System  |     |
| Settings of TeSys Tera Motor Management System     |     |

# Presentation of TeSys Tera Motor Management System

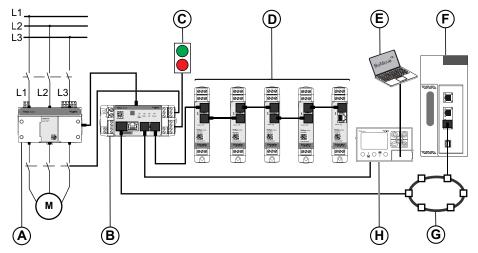
#### What's in This Chapter

| TeSys Master Range              |    |
|---------------------------------|----|
| TeSýs Tera System               |    |
| Technical Characteristics       |    |
| Components of TeSys Tera System | 20 |
| Load Current Transformers       |    |
| Ground Current Transformers     | 27 |

#### **TeSys Master Range**

TeSys is an innovative motor control and management solution from the global market leader. TeSys offers connected, efficient products, solutions for switching, protection of motors and electrical loads in compliance with all major global electrical standards.

# **TeSys Tera System**


#### **Overview**

The TeSys Tera Motor Management System (TeSys Tera system) is part of the TeSys Active range of intelligent relays and motor starters. The TeSys Tera system is designed as a reliable building block for Intelligent Motor Control Centres (iMCCs) to provide complete protection, control, and monitoring capabilities for single-phase or three-phase AC induction motors.

The TeSys Tera system is installed in the low voltage switchgear system and connects the higher level automation system through fieldbus network and the motor feeder.

TeSys Tera system:

- Covers conventional and advanced motor protection, metering, and monitoring in iMCC feeders into single, easy to configure, compact communicating module with a display.
- Provides protection controller for low voltage contactor-controlled motor starter feeders.
- Provides flexible and modular motor management system for motors with constant speeds in low voltage applications.



**NOTE:** Please contact your local Schneider Electric representative concerning its availability of the EtherNet/IP variant.

- A LTMTCT/LTMTCTV sensor module
- B LTMT main unit
- C Start/Stop commands
- D LTMT expansion units
- E PC running the TeSys Tera DTM embedded in a FDT container, such as SoMove software
- F Programmable Logic Controller (PLC) or Distributed Control System (DCS)
- G Communication network
- H LTMTCUF control operator unit

#### **Functional Characteristics**

The TeSys Tera system manages:

- Single-phase or three-phase AC induction motors up to 100 A.
- Single-phase or three-phase AC induction motors up to 810 A when using external current transformers.
- The connection between the control system and the motor feeder, increases plant availability.
- Significant savings to the installation, commissioning, operation, and maintenance.
- Numerical microprocessor equipped controller that allows to set parameters of the motor according to the application and process requirements.

## **Key Benefits**

The key benefits with use of advanced motor protection are:

- The TeSys Tera system covers all the load to monitor and protect the needs from the feeders to the critical process automation.
- The equipment is protected when advanced diagnostics, statistics, and alarms helps to anticipate unexpected production halts and minimize downtime.
- The TeSys Tera system is compact and a natural fit for the control panels with IEC or NEMA standards.
- The TeSys Tera system connectivity and access to real-time data provide key information to enhance the operation and security of the process while improving efficiency.

#### Features

The TeSys Tera system provides the following features:

- Configurable overload protection for class 5 to 40 based on current.
- Thermistor based motor protection.
- Imbalance, phase loss protection for current, and voltage input separately.
- Locked rotor or stalled rotor protection.
- Electrical parameter monitoring, such as current, voltage, power, power factor, frequency, harmonics, and energy.
- Monitoring for different motor based parameters, such as operating hours, number of starts, run hours, and so on.
- Communication with PLC or DCS over Modbus RTU, or PROFIBUS DP protocol.
- · Records trip data, event, self-diagnostic events with time stamp.
- Different starter configurations, such as direct online (DOL), reverse direct online (RDOL), and star-delta.
- Independent protection, even if PLC or DCS connection is interrupted, TeSys Tera system still provides protection for the motor.
- Flexible protection, control, and communication options to suit any low voltage contactor-controlled motor starter application.
- Integrated push button and LED indicators reduce external components and wiring.
- Multiple communication protocols allow affordable integration to larger and complex substation monitoring and control systems.

- Reset push button is available on the controller and the control operator unit thereby reducing the need for one digital input to be configured as reset.
- Optional graphical control operator unit is provided with the controller for display of all metering, protection, and related parameters.
- Conformal coating on the PCB inside the controller resists the corrosive environment, hazardous chemicals, dust, and so on.

#### **Supported Industries**

The TeSys Tera system supports the following industries and associated business sectors:

| Industry                      | Sectors                                                                                                                                                                                                             | Application                                                                                                                                                                                                                                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Industry                      | <ul> <li>Metal, mineral, and mining: cement, glass, steel, paper, gold, diamond, platinum</li> <li>Petrochemical</li> <li>Chemical: pulp and paper industry</li> <li>Pharmaceutical</li> <li>Oil and gas</li> </ul> | <ul> <li>Control and monitor pump motors</li> <li>Control ventilation</li> <li>Control load traction and movements</li> <li>View status and communicate with machines</li> <li>Process and communicate the data captured</li> <li>Remotely manage data for one or several sites through the internet</li> </ul> |
| Energy and<br>Infrastructure  | <ul> <li>Water treatment and transportation</li> <li>Power generation and transport</li> </ul>                                                                                                                      | <ul> <li>Control and monitor pump motors</li> <li>Control ventilation</li> <li>Remotely control wind turbine</li> <li>Remotely manage data for one or several sites through the Internet</li> </ul>                                                                                                             |
| Motor Control<br>Centre (MCC) | <ul><li>Process industry</li><li>Power plant engineering</li></ul>                                                                                                                                                  | <ul> <li>Protection and control of motors:</li> <li>Heavy starting motors (paper, cement and metal industries, and water managements)</li> <li>High availability plants (chemical, oil, raw material, processing industry, and power plants)</li> </ul>                                                         |

# **Technical Characteristics**

## **Environmental Characteristics**

| Conforming to standards                           | IEC/EN 60947-4-1, UL/CSA 60947-4-1                                            |                                                                                      |  |
|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Product certifications                            | IEC, UL <sup>1</sup>                                                          |                                                                                      |  |
| Rated insulation voltage (Ui)                     | Conforming to IEC/EN 60947-1, overvoltage category III, degree of pollution 3 | 690 V                                                                                |  |
| Rated impulse withstand voltage (Uimp)            | Conforming to IEC/EN 60947-4-1                                                |                                                                                      |  |
|                                                   | 100–240 Vac/Vdc supply, digital inputs and digital outputs                    | 4 kV                                                                                 |  |
|                                                   | 24 Vdc supply, inputs and outputs                                             | 0.8 kV                                                                               |  |
|                                                   | Communication circuits                                                        | 0.8 kV                                                                               |  |
|                                                   | Current or voltage measurement circuit                                        | 6 kV                                                                                 |  |
| Short-circuit withstand                           | Conforming to IEC/EN 60947-4-1                                                | 100 kA                                                                               |  |
| Climatic withstand                                | Conforming to IEC/EN 60068-2-30                                               | 12 x 24 hour cycles                                                                  |  |
|                                                   | Conforming to IEC/EN 60070-2-11                                               | 48 h                                                                                 |  |
| Corrosion immunity                                | Atmosphere free from corrosive gases                                          |                                                                                      |  |
| Humidity                                          | 5–95%, non-condensing                                                         |                                                                                      |  |
| Ambient air temperature around the device         | Storage                                                                       | -40 to +80 °C (-40 to +176 °F)                                                       |  |
|                                                   | Operation                                                                     | -20 to +70 °C (-4 to +158 °F)                                                        |  |
| Measured creepage distances                       | -                                                                             | <ul> <li>5.10 mm (0.20 in.) on 250 V</li> <li>7.25 mm (0.28 in.) on 690 V</li> </ul> |  |
| Flame resistance                                  | Conforming to UL 94                                                           | 960 °C (1760 °F)<br>(for parts supporting live components)                           |  |
|                                                   | Conforming to IEC/EN 60695-2-12                                               | 650 °C (1202 °F)                                                                     |  |
|                                                   |                                                                               | (for other parts)                                                                    |  |
| Shock resistance (1/2 sine wave, 11 ms)           | Conforming to IEC/EN 60068-2-27 <sup>2</sup>                                  | 15 gn                                                                                |  |
| Vibration resistance                              | Conforming to IEC/EN 60068-2-63                                               | 4 gn (plate mounted)                                                                 |  |
|                                                   | 5–300 Hz                                                                      | 1 gn (mounted on DIN rail)                                                           |  |
| Resistance to electrostatic discharge             | Conforming to IEC/EN 61000-4-2                                                | In open air: 8 kV - Level 3                                                          |  |
|                                                   |                                                                               | On contact: 6 kV - Level 3                                                           |  |
| Immunity to radiated electromagnetic interference | Conforming to IEC 61000-4-3                                                   | 10 V/m - Level 3                                                                     |  |
| Immunity to fast transient                        | Conforming to IEC 61000-4-4                                                   | On supply and digital outputs: 2 kV - Level 2                                        |  |
|                                                   |                                                                               | Other circuits: 2kV - Level 1                                                        |  |
| Immunity to radioelectric fields <sup>3</sup>     | Conforming to IEC/EN 61000-4-6                                                | 10 V - Level 3                                                                       |  |

This product has been designed for use in certified environment, else it may cause unwanted electromagnetic disturbance to self or other devices. Without modifying the contact states, in the most unfavorable direction. 1.

<sup>2.</sup> 3. This product has been designed for use in environment A and in B, it may cause unwanted electromagnetic disturbance to other devices, which may require the implementation of adequate mitigation measures.

## Immunity to Dissipated Shock Waves

| Conforming to IEC/EN 61000-4-5 |             |                   |  |
|--------------------------------|-------------|-------------------|--|
|                                | Common mode | Differential mode |  |
| Digital outputs and supply     | 2 kV        | 1 kV              |  |
| 24 Vdc digital inputs          | 2 kV        | 1 kV              |  |
| 100–240 Vac/Vdc digital inputs | 2 kV        | 1 kV              |  |
| Voltage inputs                 | 2 kV        | 1 kV              |  |
| Communication                  | 2 kV        | _                 |  |
| Temperature sensor (IT1/IT2)   | _           | 1 kV              |  |

# **Altitude Derating**

|                                | 2000 m<br>(6562 ft) | 3000 m<br>(9843 ft) | 3500 m<br>(11483 ft) | 4000 m<br>(13123 ft) | 4500 m<br>(14764 ft) |
|--------------------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
| Rated operational voltage (Ue) | 1                   | 0.93                | 0.87                 | 0.8                  | 0.7                  |
| Maximum operating temperature  | 1                   | 0.93                | 0.92                 | 0.9                  | 0.88                 |

# **Components of TeSys Tera System**

The hardware components of the TeSys Tera system are:

- LTMT main unit
- LTMTCT/LTMTCTV sensor module
- LTMT expansion unit
- LTMTCUF control operator unit

The microprocessor based LTMT main unit is the central component in the system that manages the control, protection, and monitoring functions of three-phase and single-phase AC induction motors.

The LTMT main unit is designed to work with the following protocols:

- Modbus RTU
- PROFIBUS DP

The system can be configured and controlled by using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit
- A PLC or DCS connected to the system through the communication network.

#### **LTMT Main Unit**

| LTMT main unit | Features                                                                                                                                                                                                                                                     | Communication                                                                                                                                                                                                                                                           | Reference                                                                   |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Modbus RTU     | <ul> <li>Current and<br/>voltage based<br/>protections</li> <li>Motor<br/>monitoring and<br/>metering<br/>functions</li> <li>Four non-<br/>isolated digital<br/>inputs</li> </ul>                                                                            | Modbus RTU<br>• Baud rate: 2400–<br>115200 bit/s<br>• Read or Write<br>function code                                                                                                                                                                                    | <ul> <li>LTMTMFM<br/>(100–240 Vac/Vdc)</li> <li>LTMTMBD (24 Vdc)</li> </ul> |
| PROFIBUS DP    | <ul> <li>Three digital outputs:         <ul> <li>2 outputs with NO contacts</li> <li>1 output with NO +NC contacts</li> </ul> </li> <li>Records         <ul> <li>Trip records</li> <li>Event records</li> <li>Device internal records</li> </ul> </li> </ul> | <ul> <li>PROFIBUS DP <ul> <li>DP-V0 cyclic services</li> <li>DP-V1 acyclic services</li> </ul> </li> <li>Time synchronisation <ul> <li>Automatic baud rate detection</li> <li>12 Mbit/s on D-Type connector and 1.5 Mbit/s on terminal connector</li> </ul> </li> </ul> | <ul> <li>LTMTPFM<br/>(100–240 Vac/Vdc)</li> <li>LTMTPBD (24 Vdc)</li> </ul> |

#### LTMTCT/LTMTCTV Horizontal Sensor Module

The following table introduces the key features of the LTMTCT/LTMTCTV sensor modules for horizontal mounting:

| Sensor module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Features                                                                                         | Current range | Voltage range | Reference   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------|---------------|-------------|
| LTMTCT modules with current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phase current measurement                                                                        | 0.3–3 A       | -             | LTMTCT3T    |
| transformers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Phase current imbalance<br/>calculation</li> </ul>                                      | 2.5–25 A      | -             | LTMTCT25T   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ground current calculation                                                                       | 10–100 A      | -             | LTMTCT100T  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Ground current measurement with<br/>external ground current<br/>transformer</li> </ul>  |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Phase loss and phase reversal<br/>detection based on current</li> </ul>                 |               |               |             |
| LTMTCTV modules with current and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | measurement     Phase current and voltage                                                        | 0.3–3 A       | 60–690 Vac    | LTMTCTV3T   |
| voltage transformers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  | 2.5–25 A      | 60–690 Vac    | LTMTCTV25T  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | 10–100 A      | 60–690 Vac    | LTMTCTV100T |
| A CONTRACT OF A | Ground current calculation                                                                       |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ground current measurement with<br>external ground current<br>transformer                        |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Phase loss and phase reversal<br/>detection based on current and<br/>voltage</li> </ul> |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frequency measurement                                                                            |               |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Power, energy, and power factor<br/>calculation</li> </ul>                              |               |               |             |

#### LTMTCTV Horizontal Sensor Module for UL and NEMA Applications

The following table introduces the key features of LTMTCTV horizontal sensor module for UL and NEMA applications:

| Sensor module                       | Features                                                                                     | Current range | Voltage range | Reference    |
|-------------------------------------|----------------------------------------------------------------------------------------------|---------------|---------------|--------------|
| LTMTCTV modules with                | Phase current and voltage                                                                    | 0.3–3 A       | 60–600 Vac    | LTMTCTV3UT   |
| current and voltage<br>transformers | <ul> <li>measurement</li> <li>Phase current and voltage imbalance</li> </ul>                 | 2.5–25 A      | 60–600 Vac    | LTMTCTV25UT  |
|                                     | calculation                                                                                  | 10–100 A      | 60–600 Vac    | LTMTCTV100UT |
|                                     | Ground current calculation                                                                   |               |               |              |
|                                     | Ground current measurement with     external ground current transformer                      |               |               |              |
|                                     | <ul> <li>Phase loss and phase reversal<br/>detection based on current and voltage</li> </ul> |               |               |              |
|                                     | Frequency measurement                                                                        |               |               |              |
|                                     | <ul> <li>Power, energy, and power factor<br/>calculation</li> </ul>                          |               |               |              |

#### **LTMT Expansion Unit**

The following table introduces the key features of the LTMT expansion unit. The maximum number of each LTMT expansion unit that can be connected to one LTMT main unit is also provided in the table.

| LTMT expansion unit            | Features                                                                                    | Reference                                         | Maximum number |
|--------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|
| 4 Digital Inputs and 2 Digital | <ul> <li>Four isolated digital inputs (DI)</li> <li>Two digital outputs (DO) with</li></ul> | <ul> <li>LTMTIN42FM (DI rating: 100/240</li></ul> | 5              |
| Outputs                        | NO contacts <li>Status LED indication</li> <li>Powered by LTMT main unit</li>               | Vac/Vdc) <li>LTMTIN42BD (DI rating: 24 Vdc)</li>  |                |

### **LTMTCUF Control Operator Unit**

The LTMTCUF control operator unit is the local Human Machine Interface (HMI) of the TeSys Tera system.

| LTMTCUF control operator unit | Features                                                                                                                                                                                                                                           | Reference |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                               | <ul> <li>Powered by LTMT main unit</li> <li>Liquid Crystal Display (LCD)</li> <li>Contextual navigation keys</li> <li>Displays parameters, alarms, and trips</li> <li>Controls the motor</li> <li>Fast Device Replacement (FDR) service</li> </ul> | LTMTCUF   |

#### **TeSys Tera DTM**

TeSys Tera Device Type Manager (DTM) is a software module hosted in a Field Device Tool (FDT) container that uses the open FDT/DTM technology. For example, SoMove software.

In SoMove software, a specific DTM exists for the TeSys Tera system. The TeSys Tera DTM Library must be installed after installing the SoMove software.

| TeSys Tera DTM | Features                                                                                                                                                                                                                                                                                | Reference                                                        |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| SoMove™        | <ul> <li>Compatible with SoMove software and other FDT containers.</li> <li>Configures the system through menu entries.</li> <li>Displays parameters, alarms, and trips.</li> <li>Option for controlling the motor feeder.</li> <li>Enable customization of operating modes.</li> </ul> | <ul> <li>TeSys Tera DTM</li> <li>SoMove FDT container</li> </ul> |

#### SoMove Software

SoMove software is a Microsoft Windows-based application, using the open FDT/DTM technology.

SoMove software contains DTMs for different devices. The TeSys Tera DTM is a specific DTM that enables the configuration, monitoring, control, and customization of the control functions of the TeSys Tera system.

#### Cables

The components of the system require cables to connect to other components and to the communication network.

| Connect to                       | Cable | Description                                                                                      | Reference   |
|----------------------------------|-------|--------------------------------------------------------------------------------------------------|-------------|
| LTMTCT/LTMTCTV<br>sensor module  |       | LTMT main unit to LTMTCT/LTMTCTV sensor module RJ11 connector cable 0.15 m (5.9 in) in length.   | LTMT9RJ1015 |
|                                  |       | LTMT main unit to LTMTCT/LTMTCTV sensor module RJ11 connector cable 0.5 m (19.6 in) in length.   | LTMT9RJ105  |
|                                  |       | LTMT main unit to LTMTCT/LTMTCTV sensor module<br>RJ11 connector cable 0.2 m (7.87 in) in length | LTMT9RJ102  |
| LTMT expansion unit              |       | LTMT main unit to LTMT expansion unit RJ45 connector cable 0.1 m (3.9 in) in length.             | LTMT9RJ401  |
|                                  |       | LTMT main unit to LTMT expansion unit RJ45 connector cable 1 m (39.37 in) in length              | LTMT9EX10   |
| LTMTCUF control<br>operator unit |       | LTMT main unit to LTMTCUF control operator unit connection cable 1.0 m (39.3 in) in length.      | LTMT9CU10S  |
|                                  |       | LTMT main unit to LTMTCUF control operator unit<br>connection cable 3.0 m (118.1 in) in length.  | LTMT9CU30S  |

| Connect to          | Cable | Description                                                                               | Reference   |
|---------------------|-------|-------------------------------------------------------------------------------------------|-------------|
| PC                  |       | PC to LTMT main unit or LTMTCUF control operator unit<br>cable 2.5 m (98.4 in) in length. | -           |
| Modbus network      |       | Modbus network communication cable 0.3 m (11.81 in.) in length.                           | _           |
|                     |       | Modbus network communication cable 1.0 m (39.3 in) in length.                             | -           |
|                     |       | Modbus network communication cable 3.0 m (118.1 in) in length.                            | -           |
| PROFIBUS DP network |       | PROFIBUS DP network communication cable 100 m (328.08 ft) in length.                      | TSXPBSCA100 |
|                     |       | PROFIBUS DP network communication cable 400 m (1,312.33 ft) in length.                    | TSXPBSCA400 |

# **Load Current Transformers**

External load current transformers expand the current range for use with motors greater than 100 A at full load .

| Schneider Electric load current | Primary | Secondary | y Inside diameter |      | Reference |
|---------------------------------|---------|-----------|-------------------|------|-----------|
| transformers                    |         |           | mm                | In.  |           |
|                                 | 100     | 1         | 35                | 1.38 | LT6CT1001 |
|                                 | 200     | 1         | 35                | 1.38 | LT6CT2001 |
|                                 | 400     | 1         | 35                | 1.38 | LT6CT4001 |
| and the                         | 800     | 1         | 35                | 1.38 | LT6CT8001 |

#### NOTE:

- The LTMTCT3/LTMTCTV3 sensor module accepts 1 A and 5 A secondary signals from external current transformers.
- The LTMTCT25/LTMTCTV25 sensor module accepts 5 A secondary signals from external current transformers.
- 3 A and 25 A CT to be used for external CT.

For more information on external CT wiring, refer to *TeSys Tera Motor Management System Installation Guide – DOCA0356EN.* 

# **Ground Current Transformers**

| Schneider Electric VigiPacT ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Туре    | Maximum | Inside diameter |       | Transformation | Reference |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------------|-------|----------------|-----------|
| current transformers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | current | current | mm              | In.   | ratio          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TA30    | 65 A    | 30              | 1.18  | 1000:1         | 50437     |
| Contraction of the second seco | PA50    | 85 A    | 50              | 1.97  |                | 50438     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IA80    | 160 A   | 80              | 3.15  |                | 50439     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MA120   | 250 A   | 120             | 4.72  |                | 50440     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SA200   | 400 A   | 200             | 7.87  |                | 50441     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PA300   | 630 A   | 300             | 11.81 |                | 50442     |

External ground current sensors measure ground current trip conditions.

# Description of TeSys Tera Motor Management System

#### What's in This Chapter

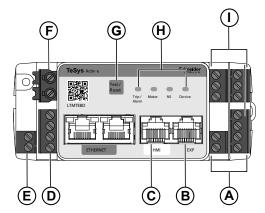
| LTMT Main Unit                | 29 |
|-------------------------------|----|
| Communication Ports           |    |
| LTMTCT/LTMTCTV Sensor Module  |    |
| LTMT Expansion Unit           |    |
| LTMTCUF Control Operator Unit |    |

## **LTMT Main Unit**

The LTMT main unit is the main module of the TeSys Tera system which coordinates with different modules to provide features like protection, control, monitor, data storage, communication, and so on.

The LTMT main unit is available with following communication protocols:

- Modbus RTU
- PROFIBUS DP


The advantages of the LTMT main unit are:

- The LTMT main unit provides power to the LTMTCT/LTMTCTV sensor module and LTMT expansion units.
- The LTMT main unit is independent of LTMTCT/LTMTCTV sensor module type. The LTMT main unit can be used for current-based protection or current and voltage-based protections.
- The LTMT main unit can be mounted on top of the LTMTCT/LTMTCTV sensor module, which reduces width of basic module.

Except communication interface, all the LTMT main unit connections remain same in all variants.

For more information on TeSys Tera installation, refer to TeSys Tera Motor Management System Installation Guide – DOCA0356EN.

#### **Front Face Description**



**NOTE:** Please contact your local Schneider Electric representative concerning its availability of the EtherNet/IP variant.

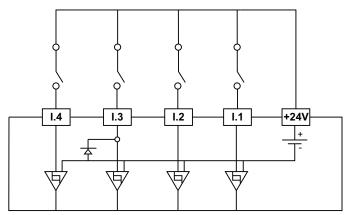
- A Digital input connectors
- B RJ45 port for expansion unit connection
- C RJ45 port for HMI connection
- D Modbus or PROFIBUS DP connector
- E Temperature input connector
- F Power supply connector
- G Reset button
- H Status LED
- I Digital output connectors

#### Status LED

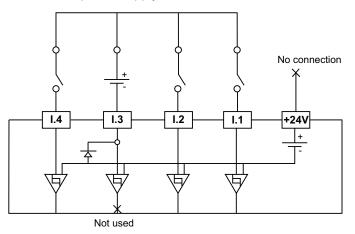
| LED name                                                                                                | Status         | Description                                                                                            |  |
|---------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------|--|
| Device                                                                                                  | OFF            | Power OFF                                                                                              |  |
|                                                                                                         | Green ON       | LTMT main unit is in healthy condition (turned ON after power ON self-test).                           |  |
|                                                                                                         | Green blinking | LTMT main unit is in logic test mode.                                                                  |  |
|                                                                                                         | Red ON         | Internal error detected or configuration error detected.                                               |  |
|                                                                                                         | Red blinking   | Communication between LTMT main unit and LTMTCT/LTMTCTV sensor module or LTMT expansion units is lost. |  |
| Motor Status, page                                                                                      | OFF            | Motor in Inhibit state.                                                                                |  |
| 76                                                                                                      | Green ON       | Motor in Stop state, ready to Start.                                                                   |  |
| Green blinking                                                                                          |                | Motor is running.                                                                                      |  |
| Trip/Alarm OFF No trip or alarm condition.                                                              |                | No trip or alarm condition.                                                                            |  |
|                                                                                                         | Blue blinking  | Alarm condition is present.                                                                            |  |
|                                                                                                         | Blue ON        | Pickup condition is present.                                                                           |  |
|                                                                                                         | Red blinking   | LTMT main unit has tripped and trip condition is still present. Trip cannot be reset.                  |  |
|                                                                                                         | Red ON         | LTMT main unit has tripped and trip condition is not present. Trip can be reset.                       |  |
| Communication                                                                                           | OFF            | Communication is not established with PLC or DCS.                                                      |  |
| Green ONCommunication is established with PLC or DCS.Red blinkingCommunication is lost with PLC or DCS. |                | Communication is established with PLC or DCS.                                                          |  |
|                                                                                                         |                | Communication is lost with PLC or DCS.                                                                 |  |

## **Trip/Reset Button**

| Function                    | Description                                                                                                                                                                  | Procedure                                                                                                                                                                                                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trip reset                  | Resets all trips that can be reset.                                                                                                                                          | Press the button and release it within 3 s.                                                                                                                                                                                                                      |
| Self test                   | Performs a self test if: <ul> <li>No trips exist</li> <li>Test mode function is enabled.</li> </ul>                                                                          | Press and hold the button for more than 3 s not exceeding 15 s.                                                                                                                                                                                                  |
| Return to default<br>values | Returns the LTMT main unit parameters to default values if the<br>motor is in Stop state. If the motor is in Start or Run state, the<br>return to default values is ignored. | Press and hold the button for more than 15 s not<br>exceeding 20 s.<br>When the button is pressed for more than 15 s, the<br>Trip/Alarm LED blinks in blue color.<br>The controller parameters are reset to their default<br>values when the button is released. |
| Induce a trip               | Put the LTMT main unit into internal trip condition.                                                                                                                         | Press and hold the button for more than 20 s.<br>The<br>LTMT main unit trips and trip is recorded in the<br><b>Trips</b> log.                                                                                                                                    |


## **Digital Inputs**

The LTMT main unit has four potential free digital inputs (type 1 according to EN61131-2 standard).


The digital inputs can be powered through either of the following ways:

- Internally by the LTMT main unit.
- By an external power supply. The input supply voltage is 24 Vdc ± 15%.

When the digital inputs are powered internally, the four digital inputs I.1, I.2, I.3, and I.4 can be used.



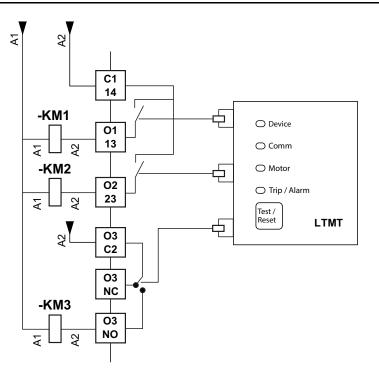
When the digital inputs are powered by an external 24 Vdc power supply, only the three digital inputs I.1, I.2, and I.4 can be used. The digital input I.3 is connected to the external power supply.



#### **Digital Outputs**

# 

#### UNINTENDED EQUIPMENT OPERATION

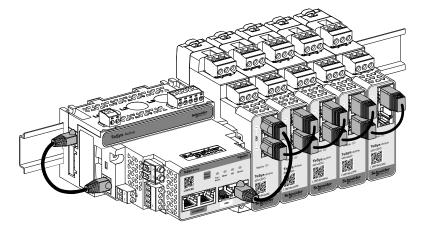

When motor is running with starter:

- Under nominal condition: Digital output of LTMT main unit and expansion unit will remain in NC state and follows the DO input source.
- Under degraded condition: If LTMT main unit and expansion unit cable will disconnect, the digital output of LTMT main unit will be in NO state, and the digital output of expansion unit will be in NC state.

# Failure to follow these instructions can result in death, serious injury, or equipment damage.

The LTMT main unit has three digital outputs:

- Two outputs with NO contacts
- One output with NO+NC contacts

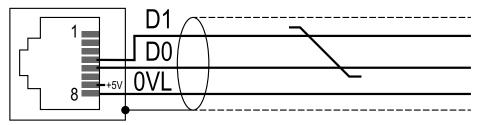



#### LTMT Main Unit Temperature

One 2-wire PT100 or PTC temperature sensor can be connected to the LTMT main unit.

#### **Expansion Port**

The expansion port is used to connect optional LTMT expansion units with the LTMT main unit. All expansion units are connected in daisy chain.




**NOTE:** Please contact your local Schneider Electric representative concerning its availability of the EtherNet/IP variant.

#### LTMT HMI Port

The LTMT HMI port is used to connect the optional LTMTCUF control operator unit with the LTMT main unit. For more information on cables, refer Cables, page 24 section.

The pinout of the shielded RJ45 connector of the LTMT HMI port is as follows:



| Pin No. | Signal     | Description                                       |
|---------|------------|---------------------------------------------------|
| 1       | -          | Not connected                                     |
| 2       | -          | Not connected                                     |
| 3       | -          | Not connected                                     |
| 4       | D1 or D(B) | Transceiver terminal 1                            |
| 5       | D0 or D(A) | Transceiver terminal 0                            |
| 6       | -          | Not connected                                     |
| 7       | +5V        | Auxiliary supply to LTMTCUF control operator unit |
| 8       | 0VL        | Signal and power supply common                    |

# **Communication Ports**

The LTMT main unit has the following kinds of communication ports:

- Modbus RTU Communication Port
- PROFIBUS DP Communication Port

#### **Modbus RTU Communication Port**

The LTMT main unit with Modbus RTU communication is connected to the Modbus field terminals by using a 4-terminal connector.

| Image              | Terminals | Description    |
|--------------------|-----------|----------------|
|                    | D0        | Data –         |
| D0 D1 <del>+</del> | D1        | Data +         |
|                    | 4         | Shielded earth |

For more information on wiring and connections, refer to *TeSys Tera Motor* Management System Modbus RTU Communication Guide – DOCA0355EN

#### **PROFIBUS DP Communication Port**

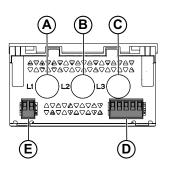
The LTMT main unit with PROFIBUS DP communication can be connected in the PROFIBUS DP daisy chain using two different connectors. In the LTMT main unit, standard DB9 connector is used for conventional method for PROFIBUS DP network. It can be achieved, by looping terminal available for PROFIBUS DP connection.

The maximum data speed with the different connectors are mentioned below.

| Image | Connector          | Data speed  |
|-------|--------------------|-------------|
|       | D-type connector   | 12 Mbits/s  |
| A B ÷ | Terminal connector | 1.5 Mbits/s |

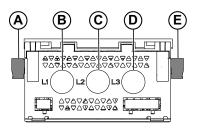
The PROFIBUS DP 4-terminal connector has the following pin assignments:

| Terminal | Signal  | Description                           |
|----------|---------|---------------------------------------|
| А        | RD-/TD- | Negative data transmission (RD-/ RD-) |
| В        | RD+/TD+ | Positive data transmission (RD+/ RD+) |
| Ţ        | -       | Shielded earth                        |


For more information on wiring and connections, refer to *TeSys Tera Motor Management System PROFIBUS DP Communication Guide – DOCA0256EN*.

# LTMTCT/LTMTCTV Sensor Module

The LTMTCT/LTMTCTV sensor module measures the electrical parameters of a motor:


- LTMTCT sensor module measures the motor currents.
- LTMTCTV sensor module measures the motor currents and voltages.

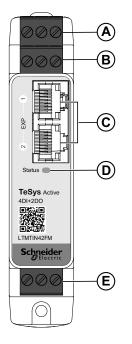
#### LTMTCT/LTMTCTVT Horizontal Sensor Module



- A Window for phase 1 current measurement
- B Window for phase 2 current measurement
- C Window for phase 3 current measurement
- D Phase voltage input connector (on LTMTCTV modules only)
- E Ground current measurement input connector

## LTMTCTV Horizontal Sensor Module for UL Applications




- A Phase voltage input connector
- B Window for phase 1 current measurement
- C Window for phase 2 current measurement
- D Window for phase 3 current measurement
- E Ground current measurement input connector

## **LTMT Expansion Unit**

A maximum of five LTMT expansion unit can be connected to one LTMT main unit. For more information on LTMT expansion unit refer to LTMT Expansion Unit, page 21.

#### **Front Face Description**

The LTMT expansion unit front face includes the following features:



- A Connector 1
- B Connector 2
- C Two RJ45 port for connection of the module to the main unit or other expansion units
- D Status LED
- E Connector 3

### **Status LED**

| LED status   | Description                                                         |
|--------------|---------------------------------------------------------------------|
| OFF          | Power OFF.                                                          |
| GREEN ON     | LTMT expansion unit is ready and communicating with LTMT main unit. |
| RED blinking | Communication with LTMT main unit is not established.               |
| RED ON       | Internal error detected or configuration error detected .           |

#### **Expansion Ports**

Each expansion unit has two RJ45 port for connection with the LTMT main unit in daisy chain.

For more information on wiring and connections, refer to *TeSys Tera Motor Management System Installation Guide – DOCA0356EN.* 

### **4 Digital Inputs and 2 Digital Outputs Expansion Unit**

The LTMTIN42 •• expansion units have:

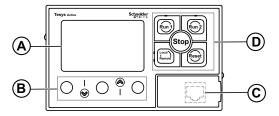
- Four potential free digital inputs (Type 1 according to standard EN61131-2).
- Two digital outputs with Normally open contacts.

The digital inputs are powered by an external power supply. The input supply voltage for the LTMTIN42BD is 24 Vdc and for the LTMTIN42FM is 100–240 Vac/ Vdc.

The LTMTIN42•• expansion units have the following plug-in terminals and pin assignments:

| Connector | Terminal | Description               |
|-----------|----------|---------------------------|
| 1         | 1.5      | Digital input 1           |
|           | 1.C      | Common for digital inputs |
|           | 1.6      | Digital input 2           |
| 2         | 1.7      | Digital input 3           |
|           | -        | No connection             |
|           | 1.8      | Digital input 4           |
| 3         | C1       | Common for digital output |
|           | 34       |                           |
|           | O2       | Digital output 2          |
|           | 35       |                           |
|           | O1       | Digital output 1          |
|           | 33       |                           |

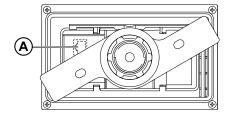
# LTMTCUF Control Operator Unit


The LTMTCUF control operator unit is a Human Machine Interface (HMI) that enables the configuration, monitoring, and control of the LTMT main unit, as part of the TeSys Tera Motor Management System

For information on installing the LTMTCUF control operator unit, refer to *TeSys Tera Motor Management System Installation Guide – DOCA0356EN*.

For information on using the LTMTCUF control operator unit, refer to *TeSys Tera* Motor Management System LTMTCUF Control Operator Unit User Guide – DOCA0233EN.

## **Front Face Description**

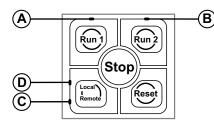

The LTMTCUF control operator unit front face includes the following features:



- A LCD display
- B Contextual navigation keys
- C Front face RJ45 port for PC connection (covered)
- D Local control interface, including five control keys and four LEDs

#### **Rear Face Description**

The LTMTCUF control operator unit rear face is shown in the following diagram:




Rear face RJ45 port

A

### **Status LED**

In the diagram below, the four control LED are labeled A – D:



The following table describes each of the four LEDs:

| LED | Status       | Description                                                                |
|-----|--------------|----------------------------------------------------------------------------|
| А   | Motor ON/OFF | CONTACTOR OUTPUT 1 is active                                               |
| В   | status       | CONTACTOR OUTPUT 2 is active                                               |
| С   | Active mode  | The active control source is the <b>Remote</b> source                      |
| D   | status       | The active control source is the Local source (Local1, Local2, and Local3) |

For more information, refer to *TeSys Tera Motor Management System LTMTCUF Control Operator Unit User Guide – DOCA0233EN.* 

### **Control Keys**

The local control interface consists of five control keys.

| Кеу          | Description                     |
|--------------|---------------------------------|
| Run 1        | Motor control keys              |
| Run 2        |                                 |
| Stop         |                                 |
| Local/Remote | Active control source selection |
| Reset        | Trip reset                      |

For more information, refer to *TeSys Tera Motor Management System LTMTCUF Control Operator Unit User Guide – DOCA0233EN.* 

# **Settings of TeSys Tera Motor Management System**

#### What's in This Chapter

| Name Plate           |  |
|----------------------|--|
| Device Configuration |  |
| System Settings      |  |
| , 0                  |  |

## **Name Plate**

## **A**WARNING

#### UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The system settings can be set up using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit
- A PLC or DCS through the communication network.

| Parameter name   | Setting range                          | Default value |
|------------------|----------------------------------------|---------------|
| Тад              | MMR0000001                             | MMR0000001    |
| Nominal Power    | 0.1–6553.5 KW                          | 0.1 KW        |
| Load Type        | <ul><li>Motor</li><li>Heater</li></ul> | Motor         |
| Number of Phases | Three Phase     Single Phase           | Three Phase   |

#### **Nominal Power**

Nominal power value entered in name plate menu is reference for all power related protection.

**NOTE:** Full load current value is either IFLC based on the starter type selection and speed selected through motor commands.

### Load Type

TeSys Tera system supports Motor (inductive) and Heater (resistive) load types. You can configure the load type base on the load.

The default load type is Motor, that enables full functionality of TeSys Tera system based on the device configuration.

The following protection functions are disabled in heater load type:

- Thermal Overload
- Locked Rotor
- Stall Rotor
- Excessive Start Time
- Auto Restart
- Maximum Number of Starts
- Anti-Backspin Timer

Direct Online starter can be used to control heater Start or Stop in heater load type.

#### **Number of Phases**

Select **Three-Phase** setting for three-phase motor, and **Single-Phase** setting for single phase motor.

## **Device Configuration**

## 

#### UNINTENDED EQUIPMENT OPERATION

- The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.
- Change in Device Configuration can cause short circuit or turn on power supply to the load.
- Check if appropriate wiring is done according to the Device Configuration.
- Ensure that the three-phase or single phase power supply is cut off to the motor, and control supply to the inputs and outputs is cut off to the expansion units while changing the Device Configuration.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The configuration of the TeSys Tera system can be set up using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

#### **Parameter Setting**

| Parameter name                       | Setting range                                                                                       | Default value |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|---------------|
| LTMTCT/LTMTCTV sensor<br>module type | LTMTCT3T     LTMTCTV3T     LTMTCTV25T     LTMTCTV25T     LTMTCTV100T     LTMTCTV3UT     LTMTCTV25UT | LTMTCTV25T    |
| LTMT expansion unit 1 type           | LTMTCTV100UT     None     LTMTIN42FM     LTMTIN42BD                                                 | None          |
| LTMT expansion unit 2 type           | None     LTMTIN42FM     LTMTIN42BD                                                                  | None          |
| LTMT expansion unit 3 type           | <ul><li>None</li><li>LTMTIN42FM</li><li>LTMTIN42BD</li></ul>                                        | None          |
| LTMT expansion unit 4 type           | <ul> <li>None</li> <li>LTMTIN42FM</li> <li>LTMTIN42BD</li> </ul>                                    | None          |

| Parameter name                         | Setting range                                                | Default value |
|----------------------------------------|--------------------------------------------------------------|---------------|
| LTMT expansion unit 5 type             | <ul><li>None</li><li>LTMTIN42FM</li><li>LTMTIN42BD</li></ul> | None          |
| LTMT main unit temperature sensor type | <ul><li>None</li><li>PT100</li><li>PTC</li></ul>             | None          |

## **System Settings**

## 

#### UNINTENDED EQUIPMENT OPERATION

- The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.
- Make sure FLC is to be maintained at same as FLC motor rating.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The system settings can be set up using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit
- A PLC or DCS through the communication network.

#### **Parameter Setting**

| Parameter name                             | Setting range                            | Default value |
|--------------------------------------------|------------------------------------------|---------------|
| Phase CT Primary                           | 1–1000 A in step of 1 A                  | 1 A           |
| Phase CT Secondary                         | 1 A or 5 A                               | 1 A           |
| Voltage Nominal                            | 110.0–690.0 V                            | 415 V         |
| Nominal Frequency                          | <ul><li>50 Hz</li><li>60 Hz</li></ul>    | 50 Hz         |
| Phase Rotation                             | <ul><li>L123</li><li>L132</li></ul>      | L123          |
| Voltage Input                              | <ul><li>Disable</li><li>Enable</li></ul> | Disable       |
| Full Load Current (IFLC) <sup>4</sup>      | 0.1–1000 A in step of 0.1 A              | 2.5 A         |
| Phase CT Secondary Passes                  | 1–10 in step of 1                        | 1             |
| Test Mode                                  | <ul><li>Disable</li><li>Enable</li></ul> | Enable        |
| Bypass interlocks During Test <sup>5</sup> | • No<br>• Yes                            | No            |

5. Interlock will be bypassed, when the Test Mode is enabled and also Logic Test DI is ON.

<sup>4.</sup> Default value for Full load current will change as per the CT sensor, external CT and number of turns.

## Full Load Current (IFLC)

Set the Full load current as per the motor current ratings. Many protection parameters are set as a multiple of the full load current (IFLC).

If the motor current is measured directly by the LTMTCT/LTMTCTV sensor module, the IFLC setting range is defined by the LTMTCT/LTMTCTV sensor module type.

| Reference    | Sensor module                                 | IFLC setting range |
|--------------|-----------------------------------------------|--------------------|
| LTMTCT3T     | LTMTCT horizontal module                      | 0.3–3 A            |
| LTMTCTV3T    | LTMTCTV horizontal module                     | 0.3–3 A            |
| LTMTCT25T    | LTMTCT horizontal module                      | 2.5–25 A           |
| LTMTCTV25T   | LTMTCTV horizontal module                     | 2.5–25 A           |
| LTMTCT100T   | LTMTCT horizontal module                      | 10–100 A           |
| LTMTCTV100T  | LTMTCTV horizontal module                     | 10–100 A           |
| LTMTCTV3UT   | LTMTCTV horizontal module for UL applications | 0.3–3 A            |
| LTMTCTV25UT  | LTMTCTV horizontal module for UL applications | 2.5–25 A           |
| LTMTCTV100UT | LTMTCTV horizontal module for UL applications | 10–100 A           |

- If the motor current is measured by an external current transformer with Phase CT secondary or 1 A or 5 A and a LTMTCT3/LTMTCTV3 sensor module, the IFLC setting range is defined by:
  - IFLCmin (A) = (Phase CT primary/ Phase CT secondary) x 0.3
  - IFLCmax (A):
    - For CT secondary 1 A = Phase CT primary X 2
    - For CT secondary 5 A = (Phase CT primary/ Phase CT secondary) x 3
- If the motor current is measured by an external current transformer with CT secondary 5 A and a LTMTCT25/LTMTCTV25 sensor module, IFLC setting range is defined by:
  - IFLCmin (A) = Phase CT primary x 0.5
  - IFLCmax (A) = Phase CT primary x 2

## Phase CT

Set the Phase CT primary and Phase CT secondary parameters:

- To 1 if the motor current is measured directly by the LTMTCT/LTMTCTV sensor module.
- Or with the characteristics of the external current transformers used to measure the motor current.

Set always the Phase CT secondary passes to 1 (default value).

## **Voltage Nominal**

The nominal voltage parameter is applicable only for LTMTCTV sensor modules.

For three phase motor, set the nominal voltage (line to line voltage) as per the motor rating.

For single phase motor, set the nominal voltage (line to neutral) as per the motor rating.

### Voltage Input

The voltage input parameter is applicable only for LTMTCTV sensor modules.

If the voltage input parameter is disabled (default value), TeSys Tera system will not provide voltage protections and measurements.

# **Metering Functions**

#### What's in This Part

| Overview                             |    |
|--------------------------------------|----|
| Current Measurement                  |    |
| Voltage Measurement                  | 57 |
| Power and Energy Measurement         | 63 |
| THD Metering for Current and Voltage | 67 |
| Temperature Measurement              |    |

## **Overview**

The LTMT main unit measures real-time values of current, voltage, power, analog inputs, temperature, and motor specific parameters.

The LTMT main unit uses these measurements to perform protection, control, monitoring, and logic functions. Each measurement is detailed in this section.

All parameter values are accessible from the LTMT main unit using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

## **Current Measurement**

#### What's in This Chapter

| RMS Current            |  |
|------------------------|--|
| Ground Current         |  |
| Average Current        |  |
| Current Imbalance      |  |
| Current Phase Sequence |  |
|                        |  |

## **RMS Current**

### Description

The LTMT main unit measures RMS values of line currents by using a LTMTCT/LTMTCTV sensor module.

- IL1: Phase 1 RMS current
- IL2: Phase 2 RMS current
- IL3: Phase 3 RMS current

| Characteristic   | Value      |
|------------------|------------|
| Unit             | Ampere (A) |
| Resolution       | 0.001 A    |
| Refresh interval | 20 ms      |

## **Ground Current**

### Description

The ground current is an imbalanced current flowing through the neutral of the three-phase system. In normal conditions, the ground current is negligible or null. It is present only when a ground-fault occurs.

The ground current is:

- Calculated internally by the LTMTCT/LTMTCTV sensor module from the measured phase currents.
- Measured by an external ground current transformer connected either to the LTMTCT••T/LTMTCTV••T horizontal sensor module.

NOTE: Calculated ground current is not available in single-phase mode.

### **Calculated Ground Current**

The ground current is calculated internally by the LTMTCT/LTMTCTV sensor modules and is equal to the vector sum of three-phase current values.

| Characteristic   | Value      |
|------------------|------------|
| Unit             | Ampere (A) |
| Resolution       | 0.001 A    |
| Refresh interval | 100 ms     |

#### **Measured Ground Current**

The measured ground current is more accurate than the calculated ground current.

The ground current can be measured using an external ground current transformer, page 26.

| Characteristic   | Value      |
|------------------|------------|
| Unit             | Ampere (A) |
| Resolution       | 0.001 A    |
| Refresh interval | 100 ms     |

NOTE: 0.003-30 A ground current can be measured by the terminal.

## **Average Current**

## Description

The LTMT main unit calculates the RMS value of the average current using the measured line currents.

$$lavg = \frac{|L1+|L2+|L3|}{3}$$

| Characteristic   | Value      |
|------------------|------------|
| Unit             | Ampere (A) |
| Resolution       | 0.001 A    |
| Refresh interval | 20 ms      |

## **Current Imbalance**

### Description

The current imbalance function measures the maximum percentage of deviation between the average current and the individual phase currents.

The current imbalance measurement is based on imbalance ratio calculated from the following formulas:

| Calculated measurement                                                                                                                                           | Formula                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| If lavg ≥ IFLC                                                                                                                                                   | $UB\% = \frac{ ILx - lavg }{lavg} \times 100\%$ |
| If lavg ≤ IFLC                                                                                                                                                   | $UB\% = \frac{ ILx - lavg }{IFLC} \times 100\%$ |
| Where <ul> <li>lavg = Average RMS phase current</li> <li>ILx = RMS current in the phase with magnetic structure in the phase with magnetic structure.</li> </ul> | aximum deviation from lavg                      |

• IFLC = Motor full load current setpoint

NOTE: Current imbalance is not available in single-phase mode.

#### **Characteristics**

The current imbalance function has the following characteristics:

| Characteristic   | Value  |
|------------------|--------|
| Unit             | %      |
| Resolution       | 1%     |
| Refresh interval | 100 ms |

## **Current Phase Sequence**

The LTMT main unit detects the current phase sequence of three-phase motor supply.

- L123: L1 current at angle 0°, L2 current at angle 240°, L3 current at angle 120°.
- L132: L1 current at angle 0°, L2 current at angle 120°, L3 current at angle 240°.
- **CTWF:** Current transformer wiring fault detected by the LTMT main unit. For example, one of the three phases is wired in opposite direction.

**NOTE:** Current imbalance is not available in single-phase mode.

# **Voltage Measurement**

#### What's in This Chapter

| RMS Voltage            |  |
|------------------------|--|
| Average Voltage        |  |
| Voltage Imbalance      |  |
| Voltage Phase Sequence |  |
| Frequency              |  |
|                        |  |

## **Overview**

The voltage measurement parameters are applicable only for LTMT main unit with LTMTCTV sensor modules.

## **RMS Voltage**

### Description

The line-to-line voltages function provides the RMS value of the phase-to-phase voltage (VL1–L2, VL2–L3, and VL3–L1):

- VL1–L2 voltage: Phase 1 to Phase 2 RMS voltage
- VL2–L3 voltage: Phase 2 to Phase 3 RMS voltage
- VL3-L1 voltage: Phase 3 to Phase 1 RMS voltage

In single-phase mode:

VL1 voltage: Phase to neutral RMS voltage

| Characteristic   | Value     |
|------------------|-----------|
| Unit             | Volts (V) |
| Resolution       | 0.1 V     |
| Refresh interval | 20 ms     |

## **Average Voltage**

## Description

The LTMT main unit calculates average voltage and provides the value in Volts. The average voltage function returns the RMS value of the average voltage.

The LTMT main unit calculates average voltage using the measured line-to-line voltages.

The average voltage of three-phase motor is calculated using the formula:

 $Vavg = \frac{VL1-L2 + VL2-L3 + VL3-L1}{3}$ 

| Characteristic   | Value     |
|------------------|-----------|
| Unit             | Volts (V) |
| Resolution       | 0.1 V     |
| Refresh Interval | 20 ms     |

## Voltage Imbalance

## Description

The line voltage imbalance function displays the maximum percentage of deviation between the average voltage and the individual line voltages.

The three-phase voltage imbalance is calculated using formula:

$$\%V_{UB} = \frac{|VLx - Vavg|}{Vavg} \times 100$$

Where,

- VLx= Maximum deviated line voltage from average voltage
- Vavg = Average voltage of the three phases

**NOTE:** Not applicable in single-phase mode.

#### **Characteristics**

The line voltage imbalance function has the following characteristics:

| Characteristic   | Value   |
|------------------|---------|
| Unit             | %       |
| Accuracy         | +/ 1.5% |
| Resolution       | 1%      |
| Refresh interval | 100 ms  |

## **Voltage Phase Sequence**

The LTMT main unit detects the voltage phase sequence of three-phase motor supply.

- L123: L1 voltage at angle 0°, L2 voltage at angle 240°, L3 voltage at angle 120°.
- L132: L1 voltage at angle 0°, L2 voltage at angle 120°, L3 voltage at angle 240°.

**NOTE:** Not applicable in single-phase mode.

## Frequency

## Description

The LTMT main unit measures the frequency of the three-phase voltage supplied to the motor. The frequency function provides the value measured based on the phase 1 voltage. In case of loss of phase 1 voltage, the frequency is not measured.

| Characteristic   | Value   |
|------------------|---------|
| Unit             | Hz      |
| Resolution       | 0.01 Hz |
| Refresh Interval | 20 ms   |

## **Power and Energy Measurement**

#### What's in This Chapter

| Active Power, Reactive Power, and Apparent Power    | 64 |
|-----------------------------------------------------|----|
| Active Energy, Reactive Energy, and Apparent Energy | 65 |
| Power Factor                                        | 66 |

### **Overview**

The power and energy values are calculated by LTMT main unit with LTMTCTV sensor module.

## Active Power, Reactive Power, and Apparent Power

### **Three-Phase Motor**

The formula for active power, reactive power, and apparent power for the three-phase motor are as follows:

 The active power, also known as true power, measures average RMS power. Total active power for three-phase motor P (kW) is derived from the following formula:

$$P (kW) = \frac{|(VL1 \times IL1 \times \cos\varphi 1) + (VL2 \times IL2 \times \cos\varphi 2) + (VL3 \times IL3 \times \cos\varphi 3)|}{1000}$$

• The reactive power measurement Q (kVAR) is derived from the following formula:

$$Q (kVAR) = \frac{|(VL1 \times IL1 \times \sin\varphi 1) + (VL2 \times IL2 \times \sin\varphi 2) + (VL3 \times IL3 \times \sin\varphi 3)|}{1000}$$

• The apparent power measurement S (kVA) is derived from the following formula:

 $S (kVA) = \frac{|(VL1 \times IL1) + (VL2 \times IL2) + (VL3 \times IL3)|}{1000}$ 

### **Single-Phase Motor**

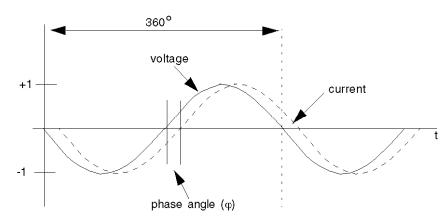
The formula for active power, reactive power, and apparent power for the single-phase motor are as follows:

- Active power: P (kW) = |(VL1 x IL1 x cosφ)|
- Reactive power: Q (kVAR) = |(VL1 x IL1 x sinφ)|
- Apparent power: S (kVA) = |(VL1 x IL1)|

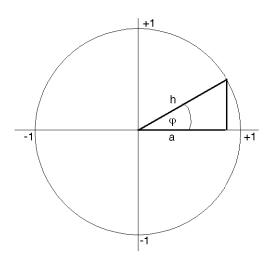
## Active Energy, Reactive Energy, and Apparent Energy

The energies are derived from the following formulas:

- Total active energy: EP (kWh) = P x Hours
- Total reactive energy: EQ (kVARh) = Q x Hours
- Total apparent energy: ES (kVAh) = S x Hours


### **Power Factor**

### Description


The power factor displays the phase displacement between phase currents and phase voltages.

The power factor (also called cosine phi or  $\cos \phi$  or  $\cos \phi$ ) represents the absolute value of the ratio of active power to apparent power.

The following diagram displays an example of the average RMS current sinusoidal curve lagging slightly behind the average RMS voltage sinusoidal curve, and the phase angle difference between the two curves:



After the phase angle ( $\phi$ ) is measured, the power factor can be calculated as the cosine of the phase angle ( $\phi$ )-the ratio of side a (active power) over the hypotenuse h (apparent power):



### **Characteristics**

The power factor has the following characteristics:

| Characteristic     | Value                   |
|--------------------|-------------------------|
| Power factor range | 0.40–1.00               |
| Accuracy           | +/- 10% for cos φ ≥ 0.6 |
| Resolution         | 0.01                    |
| Refresh interval   | 100 ms                  |

# **THD Metering for Current and Voltage**

The LTMT main unit measures:

- The Total Harmonic Distortion (THD) of the three-phase currents:
  - L1 current THD
  - L2 current THD
  - L3 current THD
- The THD of the three-phase voltages, when voltages are measured by a LTMTCTV sensor module:
  - L1–L2 voltage THD
  - L2–L3 voltage THD
  - L3–L1 voltage THD
- The THD of the single-phase voltage:
  - L1–N voltage THD

The THD is measured up to the seventh harmonic.

| Characteristics  | Value  |
|------------------|--------|
| Unit             | %      |
| Resolution       | 1 %    |
| Refresh interval | 100 ms |

## **Temperature Measurement**

The TeSys Tera system supports maximum 1 temperature inputs for LTMT main unit.

## **Temperature Measured by LTMT Main Unit**

The LTMT main unit temperature input can be connected to a 2-wire temperature sensor.

One of the following types of temperature sensors can be used:

- PT100
- Binary PTC

| Characteristic   | PT100 temperature sensor | Binary PTC resistance temperature sensor |
|------------------|--------------------------|------------------------------------------|
| Range            | 0 to 180 °C              | 500 to 4000 Ω                            |
| Resolution       | 0.1 °C                   | 1Ω                                       |
| Refresh interval | 500 ms                   | 500 ms                                   |

# **Monitoring Functions**

#### What's in This Part

| Overview               | 70 |
|------------------------|----|
| Thermal Memory         | 71 |
| Thermal Time to Trip   |    |
| Thermal Time to Cool   |    |
| Motor History          | 74 |
| Motor Status           |    |
| Inhibit Status         |    |
| System Self-Diagnostic | 79 |
| Test Functions         | 80 |
| Communication Loss     |    |
| HMI Communication Loss |    |
| Monitoring Records     |    |
| •                      |    |

## **Overview**

All parameter values are accessible from the LTMT main unit using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

# **Thermal Memory**

## **Description**

The LTMT main unit calculates the thermal memory based on the trip class and service factor parameters of thermal overload protection settings.

| Characteristic   | Value |
|------------------|-------|
| Unit             | %     |
| Resolution       | 1 %   |
| Refresh interval | 20 ms |

# **Thermal Time to Trip**

## Description

The LTMT main unit displays the time to trip for thermal protection. Based on thermal memory, the LTMT main unit calculates the time remaining before tripping of the thermal protection.

| Characteristic   | Value |
|------------------|-------|
| Unit             | s     |
| Resolution       | 1 s   |
| Refresh interval | 1 s   |

# **Thermal Time to Cool**

# Description

The LTMT main unit displays the time to cool when motor is stopped or tripped. Based on the trip class and service factor parameters of thermal overload protection settings, the LTMT main unit calculates the time to cool and keeps the LTMT main unit in inhibit state.

# **Characteristics**

| Characteristic   | Value |
|------------------|-------|
| Unit             | S     |
| Resolution       | 1 s   |
| Refresh interval | 1 s   |

# **Motor History**

# **Maximum Start Counter**

The LTMT main unit counts the number of motor starts within a given period of time. The number of motor starts is used by the function Maximum Number of Starts, page 155.

# **Maximum Start Inhibit Time**

The LTMT main unit tracks the maximum start inhibit time. The maximum start inhibit time is defined by the function Maximum Number of Starts, page 155.

# **Motor Starting Peak Current**

The LTMT main unit tracks the maximum current drawn by the motor during the start time. When the motor goes to Start state, the controller starts recording the starting peak current. When the motor goes to Run or Stop state, the controller stops recording the starting peak current.

# **Motor Starting Time**

The LTMT main unit records the time when the motor goes to Start state. The controller stops recording the time when the motor goes to Run or Stop state.

# **Total Run Hour**

The LTMT main unit records the total run hour from the factory reset or **Reset** total run hour command.

### Last Run Hour

The LTMT main unit measures the number of hours the motor has run from the time it has last been started.

# **Number of Starts**

The LTMT main unit counts the total number of times the motor has started.

The number of starts is reset to 0 by:

- Return to default values command.
- Reset number of starts command.

# **Number of Stops**

The LTMT main unit counts the total number of times the motor has stopped.

The number of stops is reset to 0 by:

- Return to default values command.
- Reset number of stops command.

### **Motor Stop Cause**

The LTMT main unit counts the total number of times the motor has stopped.

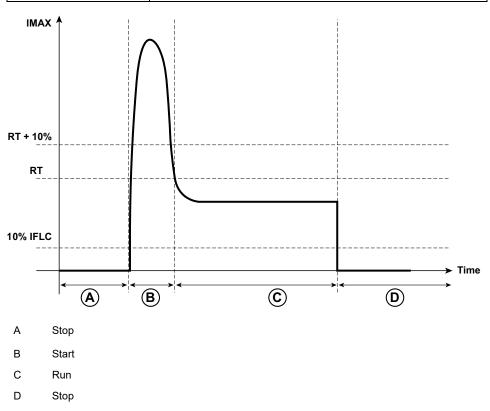
The number of stops is reset to 0 by:

- Return to default values command.
- Reset number of stops command.

| Motor stop cause    | Description                                                                            |  |
|---------------------|----------------------------------------------------------------------------------------|--|
| НМІ                 | Motor stopped on command received from LTMTCUF control operator unit.                  |  |
| Local DI            | Motor stopped on Local Stop DI input detection.                                        |  |
| Remote DI           | Motor stopped on Remote DI input detection.                                            |  |
| Communication       | Motor stopped on command received from PLC or DCS.                                     |  |
| Auto restart        | Motor stopped by auto restart function.                                                |  |
| Trip                | Motor stopped due to trip.                                                             |  |
| Auto                | Motor stopped without any command.                                                     |  |
| Forced Stop         | Motor stopped on Forced Stop input.                                                    |  |
| Direction change    | Motor stopped to change direction by reverse type of starters.                         |  |
| No feedback         | Motor stopped as no feedback received (either current feedback or RUN DI).             |  |
| Speed change        | Motor stopped to change speed on command received (applicable for two speed starters). |  |
| Custom Stop command | Motor stopped on Custom Stop command detection.                                        |  |
| Mode transfer       | Motor stopped due to mode change if Bump mode is enabled.                              |  |
| No Voltage          | Motor is stopped due to no voltage detected.                                           |  |

# **Motor Status**

# 


#### UNINTENDED EQUIPMENT OPERATION

When the motor current drops below 10% of IFLC, the LTMTCUF control operator unit HMI displays 0. Make sure the motor is completely in the STOP position before carrying out any maintenance activities.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

The LTMT main unit defines the motor status based on maximum of three-phase current (IMAX) and full load current (IFLC) setting.

| Motor status | Description                                                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stop         | Motor stopped if IMAX < 10% of IFLC.                                                                                                                                          |
| Start        | Motor starting if IMAX $\geq$ 10% of IFLC.                                                                                                                                    |
| Run          | Motor running if IMAX goes above the Run threshold + 10% and comes below the Run threshold. Run threshold (RT) is a parameter of the Excessive start time function, page 167. |



### **Heater Status**

The LTMT main unit defines the heater status based on maximum of three-phase current (IMAX) and full load current (IFLC) setting.

| Heater status | Description                                             |  |
|---------------|---------------------------------------------------------|--|
| Stop          | Heater in Stop state if IMAX < 10% of IFLC.             |  |
| Start         | Heater in Start state if IMAX ≥ 15% of IFLC for 100 ms. |  |

# **Inhibit Status**

# **Description**

Inhibit status is a pre-start condition of motor. If any of the inhibit cause is present, TeSys Tera system will not allow the motor to start.

The list of inhibit cause depends on the motor starter function selected.

# **Inhibit Cause**

| Inhibit cause                 | Description                                                                                                                                                                                                                                                                                                    | Validity                                                                                                                                                                         |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Voltage Inhibit            | This inhibit cause is set if TeSys Tera system measures the three-phase voltage below 10% of nominal voltage.                                                                                                                                                                                                  | Valid for all motor starter types.<br>This inhibit status is applicable only for the<br>LTMTCTV sensor module and if the Voltage<br>input setting is enabled in system settings. |
| Under Voltage Inhibit         | This inhibit cause is set if TeSys Tera system detects under voltage pickup/alarm.                                                                                                                                                                                                                             | Valid for all motor starter types.<br>This inhibit status is applicable only for the<br>LTMTCTV sensor module and if the Voltage<br>input setting is enabled in system settings. |
| Trip Inhibit                  | This inhibit cause is set if TeSys Tera system is in trip condition.                                                                                                                                                                                                                                           | Valid for all motor starter types.                                                                                                                                               |
| Thermal Inhibit               | This inhibit cause is set if the thermal memory is greater than<br>the start inhibit level setting of the thermal overload<br>protection. This inhibit cause is also set if the pause time (if<br>pause time function is enabled), or the cool down time (if cool<br>down time function is enabled) is active. | Valid for all motor starter types.                                                                                                                                               |
| Maximum Starts<br>Inhibit     | <ul> <li>This inhibit cause is set if:</li> <li>Maximum start protection is enabled.</li> <li>The maximum starts are performed as per the configured setting or if time between the two starts period is not elapsed.</li> </ul>                                                                               | Valid for all motor starter types.                                                                                                                                               |
| Interlock 1-12 Inhibit        | <ul> <li>This inhibit cause is set if:</li> <li>DI of TeSys Tera system is configured as Interlock.</li> <li>DI status is detected as OFF.</li> </ul>                                                                                                                                                          | Valid for all motor starter types.                                                                                                                                               |
| Local DI Stop Inhibit         | <ul> <li>This inhibit cause is set if:</li> <li>Local DI stop is configured in one of the DI settings.</li> <li>Local DI stop status is ON and Local DI stop is enabled in active mode.</li> </ul>                                                                                                             | Valid for all motor starter types.                                                                                                                                               |
| Remote DI Stop<br>Inhibit     | <ul> <li>This inhibit cause is set if:</li> <li>Remote DI stop is configured in one of the DI settings.</li> <li>Remote DI stop status is ON and Remote DI stop is enabled in active mode.</li> </ul>                                                                                                          | Valid for all motor starter types.                                                                                                                                               |
| Forced Stop Inhibit           | <ul><li>This inhibit cause is set if</li><li>Forced Stop is configured in DI settings.</li><li>Forced Stop status is detected as ON.</li></ul>                                                                                                                                                                 | Valid for all motor starter types.                                                                                                                                               |
| Communication Stop<br>Inhibit | This inhibit cause is set if, communication stop status is present and communication stop is enabled in active mode.                                                                                                                                                                                           | Valid for all motor starter types.<br>This inhibit status is applicable only, if the<br>communication start input setting in starter<br>setting is configured as momentary.      |
| Anti-backspin Inhibit         | This inhibit cause is set if Anti-backspin timer function is<br>enabled and Anti-backspin timer is active after motor stop.<br>Refer to Anti-Backspin Timer, page 165.                                                                                                                                         | Valid for all motor starter types.                                                                                                                                               |
| Direction Change<br>Inhibit   | In reverse starters, this inhibit cause is set if the Interlock timer is active after motor stops.                                                                                                                                                                                                             | Valid for the reversing motor starter types.                                                                                                                                     |

| Custom Stop Inhibit        | This inhibit cause is set if:                                                                               | Valid for all motor starter types. |
|----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|
|                            | <ul> <li>Any input is configured to Custom stop input of<br/>temporary register 29.</li> </ul>              |                                    |
|                            | <ul> <li>The Custom stop input status is ON and Custom stop<br/>input is enabled in active mode.</li> </ul> |                                    |
| Firmware Update<br>Inhibit | When firmware device update is in progress.                                                                 | Valid for all motor starter types. |

# **System Self-Diagnostic**

# Description

The LTMT main unit carries out a series of self tests to monitor:

- Correct internal functioning of the LTMT main unit.
- · Correct functioning of the modules connected to the LTMT main unit.
- Communication with the modules connected to the LTMT main unit.
- LTMT main unit internal temperature.

The device internal error detected by the self tests are accessible from the LTMT main unit using the following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

The last 20 detected device internal error detected are recorded by the LTMT main unit. Refer to Device Internal Records, page 86.

In case of device internal error detected, refer to the troubleshooting part in the *TeSys Tera Motor Management System Installation Guide – DOCA0356EN*.

# **Device Internal Error Detected**

The motor or heater is stopped or inhibited by the motor starter logic when the following device internal error detected:

- Sensor module communication error detected.
- Expansion unit communication error detected.
- Error detected during expansion unit initialization.
- Configuration error detected.
- Internal temperature is high.

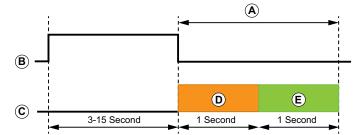
# **Test Functions**

For devices tested in free air, information will be provided to indicate that the device is not evaluated for use in an individual enclosure.

# Self Test Without Trip

# 

#### UNINTENDED EQUIPMENT OPERATION


If the motor is connected to the contactor then there will be possibility of starting the motor for few seconds.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Press **Reset** button for 3 to 15 s to perform a self test without trip. When the button is released, the LTMT main unit LED will turn **ON** in pattern 1 for 1 s. After 1 s, the LTMT main unit LED will turn **ON** in pattern 2 for 1 s. After 2 s from the beginning of the test, LTMT main unit comes out of the test mode.

| LEDs          | Pattern 1 LED status | Pattern 2 LED status |
|---------------|----------------------|----------------------|
| Device        |                      |                      |
| Communication |                      | •                    |
| Motor Status  |                      | 0                    |
| Trip/Alarm    |                      |                      |

The graphical representation of self test mode without trip is shown below:



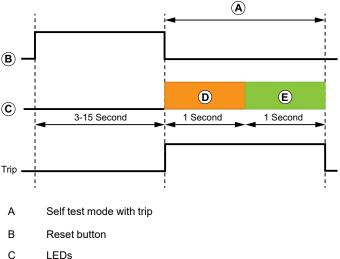
- A Self test mode without trip
- B Reset button
- C LEDs
- D Pattern1
- E Pattern2

# Self Test With Trip (If Motor is Stopped)

# 

#### UNINTENDED EQUIPMENT OPERATION

If the motor is connected to the contactor then there will be possibility of starting the motor for few seconds.


Failure to follow these instructions can result in death, serious injury, or equipment damage.

When a self test with trip command is received from LTMTCUF control operator unit or communication network or a digital input of the controller:

- The LTMT main unit LED will turn **ON** in pattern 1 for 1 s. After 1 s, the LTMT main unit LEDs will turn **ON** in pattern 2 for 1 s.
- The state of the trip digital output changes for 2 s.
- After 2 s from the beginning of the test, the LTMT main unit comes out of the test mode, and the state of the trip digital output will change.

| LEDs          | Pattern 1 LED status | Pattern 2 LED status |
|---------------|----------------------|----------------------|
| Device        |                      |                      |
| Communication |                      | •                    |
| Motor Status  |                      | $\bigcirc$           |
| Trip/Alarm    |                      |                      |

The graphical representation of self test mode with trip is shown below:



- C LEDS
- D Pattern1
- E Pattern2

# Logic Test Mode

# 

#### UNEXPECTED BEHAVIOUR OF EQUIPMENT

• The motor may turn ON for few milli seconds before the TeSys Tera system trips while operating in Logic Test Mode.

# Failure to follow these instructions can result in death, serious injury, or equipment damage.

The logic test function of the LTMT main unit can be used during commissioning of the motor. This function helps to check the wiring of the motor with LTMT main unit. Any one of the digital input of the LTMT main unit should be configured as logic test DI. The LTMT main unit enters into or exits from the logic test mode depending on the status of the logic test DI.

In logic test mode, the LTMT main unit allows you to start or stop the motor (contactors) to verify the wiring and bypass the following inhibit conditions:

- Thermal memory inhibit
- Max start inhibit
- Low voltage inhibit
- · No voltage inhibit

In logic test mode, the LTMT main unit allows to reset the trip or auto resets the trip.

The LTMT main unit exits from the logic test mode in the following case:

- Voltage detected by LTMTCTV sensor module.
- Current detected by LTMTCT/LTMTCTV sensor module.
- · Logic test DI status is OFF.

The logic test mode can be set up using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

# **Communication Loss**

# Description

Communication loss function:

- Detects the loss of communication between the LTMT main unit and the PLC or DCS connected through the communication network, once communication has been established.
- Generates an alarm or a trip action according to the function setting.

When **Trip in Remote Mode only** setting is enabled, the LTMT main unit sends the trip command only when the motor is running in Remote mode. If the motor is running in Local mode, the LTMT main unit sends only the alarm signal.

# **Parameter Setting**

| Parameter                                                      | Range                                                                          | Default value  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                       | <ul> <li>Disable</li> <li>Alarm</li> <li>Alarm + Trip</li> <li>Trip</li> </ul> | Disable        |
| Time Delay                                                     | 0.1 – 6000.0 s in step of 0.1 s                                                | 1 s            |
| Reset Mode                                                     | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay<br>(Applicable only if Reset mode<br>is Auto) | 0.0 – 6000.0 s in step of 0.1 s                                                | 0 s            |
| Trip in Remote Mode Only                                       | <ul><li>Disable</li><li>Enable</li></ul>                                       | Disable        |

# **HMI Communication Loss**

# **Description**

HMI Communication loss function:

- Detects the loss of communication between the LTMT main unit and the HMI connected via the HMI port, once communication has been established.
- Generates an alarm or a trip action according to the function setting.

# **Parameter Setting**

| Parameter        | Range                                                                          | Default value  |
|------------------|--------------------------------------------------------------------------------|----------------|
| Function         | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| Time Delay       | 0.1 – 6000.0 s in step of 0.1 s                                                | 1 s            |
| Reset Mode       | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto Reset Delay | 0.0 – 6000.0 s in step of 0.1 s                                                | 0 s            |

# **Monitoring Records**

# Description

The data recording function of LTMT main unit keeps time stamped data records for further diagnostics. This function helps to record the sequence of events that has occurred.

There are different types of data recorded such as trip records, event records, device internal records, and motor start records.

The records are available through:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

### **Date and Time**

The LTMT main unit date and time is used to time stamp the data records.

The date and time can be configured using:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

# **Trip Records**

The LTMT main unit records the last 20 encountered trips. Each trip record contains the following information:

- Record ID
- Time stamp
- Trip cause
- · Following values are recorded at the time of the trip:
  - Thermal memory
  - RMS and ground currents
  - RMS voltages
  - Current and voltage imbalances
  - Current and voltage THD
  - Current and voltage phase sequence
  - Active power
  - Power factor
  - Frequency
  - Motor status
  - Full load current of motor
  - Temperature input
  - Analog input
  - Trip code

For more information on trip codes, refer to Trip Code, page 171.

### **Event Records**

The LTMT main unit records the last 100 encountered events. Each event record contains the following information:

- Record ID
- Time Stamp
- Event
- Event Code

For more information on event codes, refer to Event Code, page 173.

# **Device Internal Records**

The LTMT main unit records the last 20 internal detected errors. Each device internal record contains the following information:

- Record ID
- Time Stamp
- Event
- Event Code

For more information on device internal controller detection codes, refer to Device Internal Error Code, page 189.

### **Motor Start Records**

The LTMT main unit records 250 current values measured during the last motor start. The sampling interval is computed internally by the LTMT main unit, based on the trip class setting of thermal overload protection.

Refer the following table for motor start curve sampling interval:

| Trip class | Sampling interval |
|------------|-------------------|
| 5          | 20 ms             |
| 10         | 40 ms             |
| 15         | 60 ms             |
| 20         | 80 ms             |
| 25         | 100 ms            |
| 30         | 120 ms            |
| 35         | 140 ms            |
| 40         | 160 ms            |

One record can be saved to serve as motor start reference record.

The last motor start record can be saved as reference record by using:

- TeSys Tera DTM.
- · Command from a PLC or DCS through the communication network.

The last motor start record and the reference record:

- Can be displayed with the TeSys Tera DTM.
- Are available for PLC or DCS through the communication network.

# **Protection Functions**

#### What's in This Part

| Protection Settings          |  |
|------------------------------|--|
| Motor Protection Functions   |  |
| Current Protection Functions |  |
| Voltage Protection Functions |  |
| Power Protection Functions   |  |
| Digital Input Interlock      |  |
| 5 I                          |  |

# 

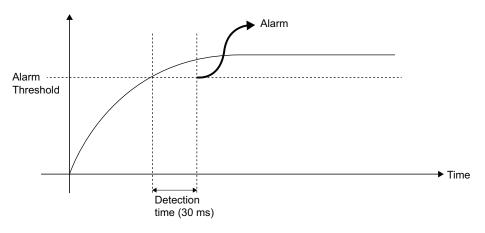
#### UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

# **Protection Settings**

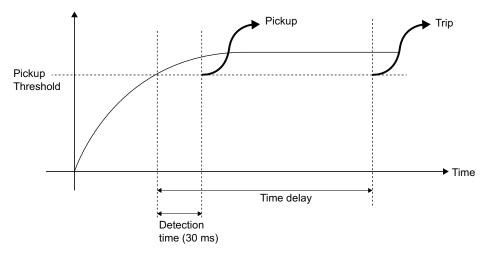
#### What's in This Chapter

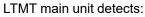

| Function Parameter  |  |
|---------------------|--|
| Reset Modes         |  |
| Hysteresis Settings |  |

# **Function Parameter**

The function parameter of each protection can be set separately to define the action of the protection function on the system.

| Function parameter value | Description                                                                                                                                               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disable                  | The protection function is disabled.                                                                                                                      |
| Alarm                    | The protection function is used to signal the alarm conditions.                                                                                           |
|                          | The alarm is not latched and it is automatically reset when the alarm conditions have disappeared.                                                        |
| Alarm + Trip             | The protection function is used to signal the alarm conditions and to stop the motor in the trip conditions.                                              |
| Trip                     | The protection function is used to stop the motor in the trip conditions. The trip conditions are defined in the description of each protection function. |
|                          | The trip is latched and must be reset according to the Reset mode set for protection function.                                                            |


### **Detection of Alarm**




LTMT main unit detects the alarm:

- After the parameter value crosses the alarm threshold.
- In 30 ms of time after the parameter value crosses the alarm threshold.

### **Detection of Pickup and Trip**





- Pickup, after the parameter value crosses the pickup threshold.
- Pickup in 30 ms of time, after the parameter value crosses the pickup threshold.
- Trip, after the parameter value crosses the pickup threshold and remain above the pickup threshold for configured time delay.

# **Reset Modes**

# **A**WARNING

#### UNINTENDED EQUIPMENT OPERATION

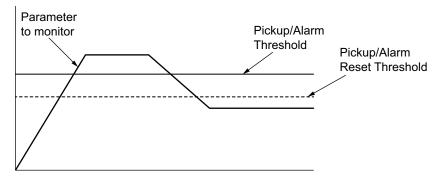
- A reset command will immediately restart the motor if the LTMT main unit is operating in a maintained control circuit.
- Equipment operation must conform to local and national safety regulations and codes.
- This equipment must only be operated by qualified electrical personnel.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

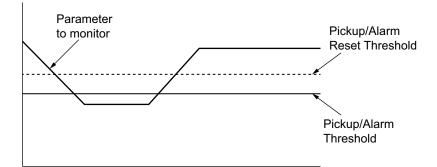
The reset mode of each protection function can be set separately. The reset mode defines the reset possibility of the protection function once tripped. The several reset modes can be set for the same protection function.

| Reset mode    | Description                                                                                                                                                  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto          | For thermal overload protection, the trip resets automatically once the thermal memory drops below the thermal reset level.                                  |
|               | For other protections, the trip resets automatically, if the pickup is reset and after the auto reset time is elapsed.                                       |
| Reset Key     | Trip reset is possible through LTMTCUF control operator unit or <b>Reset</b> button on the LTMT main unit or <b>Trip Reset</b> in DTM control panel section. |
| DI            | Trip reset is possible through digital input. One of the digital inputs must be configured as trip reset signal.                                             |
| Communication | Trip reset is possible from PLC or DCS through the communication network.                                                                                    |

# **Hysteresis Settings**


## Description

Hysteresis settings are used for calculating reset threshold of protection alarm and pickup.


Pickup or alarm threshold are set by protection settings. For reset threshold calculation LTMT main unit uses hysteresis settings.

For example, if overcurrent protection pickup is set at 100% of full load current (IFLC), and if hysteresis settings for current protections is set at 3%, the pickup reset threshold level for overcurrent protection is 97% of IFLC.

#### **Over protections:**



#### **Under protections:**



Hysteresis is fixed for the following protections:

- Voltage phase loss 35% of imbalance
- Current phase loss 15% of IFLC
- Voltage imbalance 3% of imbalance

#### **Parameter Settings**

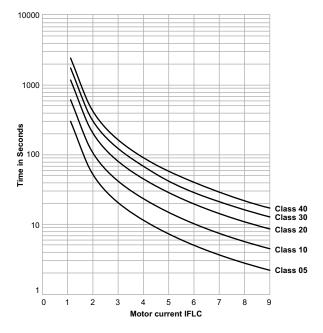
| Parameter                             | Setting range           | Default value |
|---------------------------------------|-------------------------|---------------|
| Hysteresis for current protection     | 3–15 % in step of 1%    | 3%            |
| Hysteresis for voltage protection     | 3–15 % in step of 1%    | 3%            |
| Hysteresis for frequency protection   | 1–15 % in step of 1%    | 3%            |
| Hysteresis for power protection       | 3–15 % in step of 1%    | 3%            |
| Hysteresis for temperature protection | 2–15 °C in step of 1 °C | 5 °C          |

# **Motor Protection Functions**

#### What's in This Chapter

| Thermal Overload       | 94 |
|------------------------|----|
| Locked Rotor           |    |
| Stalled Rotor          |    |
| Temperature Protection |    |

# **Thermal Overload**


# Description

The thermal overload is a condition where current higher than the rated value flows to the motor resulting in excessive heating of the motor. Rapid motor heating occurs during the overload, acceleration time, and locked rotor condition. The LTMT main unit computes the thermal memory (TM) as per the motor running current.

The thermal overload protection function generates the following signals:

- Alarm: Thermal memory goes above the alarm level.
- Trip: Thermal memory reaches to 100%.
- Thermal Inhibit: When the motor is stopped and thermal memory is above the start thermal inhibit level.

The following graph shows the thermal overload protection curve:



### **Trip Time Chart**

The thermal overload protection function supports different trip classes and service factor setting. The following tables shows the thermal overload protection trip time with respect to motor current, trip class setting, and service factor setting.

| Service | Motor current<br>(x IFLC) | Trip time (s) |          |          |          |          |          |          |          |
|---------|---------------------------|---------------|----------|----------|----------|----------|----------|----------|----------|
| factor  |                           | Class 5       | Class 10 | Class 15 | Class 20 | Class 25 | Class 30 | Class 35 | Class 40 |
| 1.00    | 7.20                      | 3.46          | 6.91     | 10.37    | 13.83    | 17.29    | 20.74    | 24.20    | 27.66    |
|         | 6.00                      | 5.00          | 10.00    | 15.00    | 20.00    | 25.00    | 30.00    | 35.00    | 40.00    |
|         | 5.00                      | 7.25          | 14.49    | 21.74    | 28.98    | 36.23    | 43.47    | 50.72    | 57.96    |
|         | 4.00                      | 11.45         | 22.91    | 34.36    | 45.82    | 57.27    | 68.73    | 80.18    | 91.64    |
|         | 3.00                      | 20.91         | 41.81    | 62.72    | 83.62    | 104.53   | 125.43   | 146.34   | 167.24   |
|         | 2.00                      | 51.06         | 102.12   | 153.18   | 204.24   | 255.30   | 306.36   | 357.42   | 408.48   |
|         | 1.50                      | 104.33        | 208.65   | 312.98   | 417.30   | 521.63   | 625.95   | 730.28   | 834.60   |
|         | 1.00                      | No trip       | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.05    | 7.20                      | 3.82          | 7.63     | 11.45    | 15.26    | 19.08    | 22.89    | 26.71    | 30.52    |
|         | 6.00                      | 5.52          | 11.04    | 16.56    | 22.08    | 27.60    | 33.12    | 38.64    | 44.16    |

| Service | Motor current Trip time (s) (x IFLC) |         |          |          |          |          |          |          |          |
|---------|--------------------------------------|---------|----------|----------|----------|----------|----------|----------|----------|
| factor  |                                      | Class 5 | Class 10 | Class 15 | Class 20 | Class 25 | Class 30 | Class 35 | Class 40 |
|         | 5.00                                 | 8.01    | 16.01    | 24.02    | 32.02    | 40.03    | 48.03    | 56.04    | 64.04    |
|         | 4.00                                 | 12.67   | 25.34    | 38.02    | 50.69    | 63.36    | 76.03    | 88.70    | 101.37   |
|         | 3.00                                 | 23.19   | 46.39    | 69.58    | 92.78    | 115.97   | 139.16   | 162.36   | 185.55   |
|         | 2.00                                 | 57.23   | 114.46   | 171.69   | 228.92   | 286.15   | 343.38   | 400.61   | 457.84   |
|         | 1.50                                 | 119.51  | 239.02   | 358.53   | 478.04   | 597.55   | 717.06   | 836.58   | 956.09   |
|         | 1.05                                 | No trip | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.10    | 7.20                                 | 4.19    | 8.38     | 12.58    | 16.77    | 20.96    | 25.15    | 29.34    | 33.54    |
|         | 6.00                                 | 6.07    | 12.14    | 18.20    | 24.27    | 30.34    | 36.41    | 42.48    | 48.55    |
|         | 5.00                                 | 8.81    | 17.61    | 26.42    | 35.22    | 44.03    | 52.83    | 61.64    | 70.44    |
|         | 4.00                                 | 13.96   | 27.91    | 41.87    | 55.83    | 69.79    | 83.74    | 97.70    | 111.66   |
|         | 3.00                                 | 25.63   | 51.25    | 76.88    | 102.51   | 128.13   | 153.76   | 179.38   | 205.01   |
|         | 2.00                                 | 63.94   | 127.88   | 191.82   | 255.76   | 319.70   | 383.64   | 447.58   | 511.53   |
|         | 1.50                                 | 136.97  | 273.94   | 410.91   | 547.88   | 684.85   | 821.82   | 958.79   | 1095.76  |
|         | 1.10                                 | No trip | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.15    | 7.20                                 | 4.59    | 9.17     | 13.76    | 18.35    | 22.93    | 27.52    | 32.11    | 36.69    |
| 1.15    |                                      |         |          |          |          |          |          |          | 53.14    |
|         | 6.00                                 | 6.64    | 13.29    | 19.93    | 26.57    | 33.22    | 39.86    | 46.50    |          |
|         | 5.00                                 | 9.65    | 19.29    | 28.94    | 38.59    | 48.23    | 57.88    | 67.53    | 77.17    |
|         | 4.00                                 | 15.31   | 30.62    | 45.94    | 61.25    | 76.56    | 91.87    | 107.19   | 122.50   |
|         | 3.00                                 | 28.21   | 56.42    | 84.62    | 112.83   | 141.04   | 169.25   | 197.46   | 225.67   |
|         | 2.00                                 | 71.25   | 142.49   | 213.74   | 284.98   | 356.23   | 427.47   | 498.72   | 569.97   |
|         | 1.50                                 | 157.29  | 314.58   | 471.87   | 629.16   | 786.44   | 943.73   | 1101.02  | 1258.31  |
|         | 1.15                                 | No trip | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.20    | 7.20                                 | 5.00    | 10.00    | 15.00    | 20.00    | 25.00    | 30.00    | 35.00    | 40.00    |
|         | 6.00                                 | 7.25    | 14.49    | 21.74    | 28.98    | 36.23    | 43.47    | 50.72    | 57.96    |
|         | 4.00                                 | 16.74   | 33.48    | 50.22    | 66.96    | 83.70    | 100.43   | 117.17   | 133.91   |
|         | 3.00                                 | 30.95   | 61.89    | 92.84    | 123.78   | 154.73   | 185.67   | 216.62   | 247.57   |
|         | 2.00                                 | 79.21   | 158.42   | 237.63   | 316.84   | 396.05   | 475.26   | 554.48   | 633.69   |
|         | 1.50                                 | 181.33  | 362.66   | 543.99   | 725.32   | 906.66   | 1087.99  | 1269.32  | 1450.65  |
|         | 1.20                                 | No trip | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.25    | 7.20                                 | 5.43    | 10.86    | 16.30    | 21.73    | 27.16    | 32.59    | 38.02    | 43.46    |
|         | 6.00                                 | 7.88    | 15.75    | 23.63    | 31.50    | 39.38    | 47.25    | 55.13    | 63.01    |
|         | 5.00                                 | 11.45   | 22.91    | 34.36    | 45.82    | 57.27    | 68.73    | 80.18    | 91.64    |
|         | 4.00                                 | 18.24   | 36.48    | 54.72    | 72.95    | 91.19    | 109.43   | 127.67   | 145.91   |
|         | 3.00                                 | 33.85   | 67.69    | 101.54   | 135.38   | 169.23   | 203.07   | 236.92   | 270.76   |
|         | 2.00                                 | 87.91   | 175.83   | 263.74   | 351.65   | 439.57   | 527.48   | 615.40   | 703.31   |
|         | 1.50                                 | 210.43  | 420.87   | 631.30   | 841.74   | 1052.17  | 1262.61  | 1473.04  | 1683.47  |
|         | 1.25                                 | No trip | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.30    | 7.20                                 | 5.88    | 11.77    | 17.65    | 23.53    | 29.41    | 35.30    | 41.18    | 47.06    |
|         | 6.00                                 | 8.53    | 17.07    | 25.60    | 34.14    | 42.67    | 51.20    | 59.74    | 68.27    |
|         | 5.00                                 | 12.42   | 24.85    | 37.27    | 49.69    | 62.12    | 74.54    | 86.96    | 99.38    |
|         | 4.00                                 | 19.81   | 39.63    | 59.44    | 79.25    | 99.07    | 118.88   | 138.69   | 158.50   |
|         | 3.00                                 | 36.91   | 73.83    | 110.74   | 147.66   | 184.57   | 221.49   | 258.40   | 295.31   |
|         | 2.00                                 | 97.45   | 194.90   | 292.35   | 389.80   | 487.25   | 584.70   | 682.15   | 779.59   |
|         | 1.50                                 | 246.84  | 493.68   | 740.52   | 987.37   | 1234.21  | 1481.05  | 1727.89  | 1974.73  |
|         | 1.30                                 | No trip | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |

| Service | Motor current | Trip time (s) |          |          |          |          |          |          |          |
|---------|---------------|---------------|----------|----------|----------|----------|----------|----------|----------|
| factor  | (x IFLC)      | Class 5       | Class 10 | Class 15 | Class 20 | Class 25 | Class 30 | Class 35 | Class 40 |
| 1.35    | 7.20          | 6.35          | 12.70    | 19.06    | 25.41    | 31.76    | 38.11    | 44.47    | 50.82    |
|         | 6.00          | 9.22          | 18.44    | 27.66    | 36.88    | 46.10    | 55.32    | 64.55    | 73.77    |
|         | 5.00          | 13.43         | 26.87    | 40.30    | 53.74    | 67.17    | 80.61    | 94.04    | 107.48   |
|         | 4.00          | 21.46         | 42.93    | 64.39    | 85.86    | 107.32   | 128.78   | 150.25   | 171.71   |
|         | 3.00          | 40.16         | 80.32    | 120.48   | 160.64   | 200.80   | 240.97   | 281.13   | 321.29   |
|         | 2.00          | 107.93        | 215.87   | 323.80   | 431.73   | 539.67   | 647.60   | 755.54   | 863.47   |
|         | 1.50          | 294.76        | 589.52   | 884.28   | 1179.04  | 1473.80  | 1768.56  | 2063.32  | 2358.08  |
|         | 1.35          | No trip       | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.40    | 7.20          | 6.84          | 13.68    | 20.52    | 27.36    | 34.20    | 41.04    | 47.89    | 54.73    |
|         | 6.00          | 9.94          | 19.87    | 29.81    | 39.75    | 49.68    | 59.62    | 69.55    | 79.49    |
|         | 5.00          | 14.49         | 28.98    | 43.47    | 57.96    | 72.45    | 86.95    | 101.44   | 115.93   |
|         | 4.00          | 23.19         | 46.39    | 69.58    | 92.78    | 115.97   | 139.16   | 162.36   | 185.55   |
|         | 3.00          | 43.59         | 87.19    | 130.78   | 174.38   | 217.97   | 261.56   | 305.16   | 348.75   |
|         | 2.00          | 119.51        | 239.02   | 358.53   | 478.04   | 597.55   | 717.06   | 836.58   | 956.09   |
|         | 1.50          | 363.64        | 727.28   | 1090.92  | 1454.56  | 1818.19  | 2181.83  | 2545.47  | 2909.11  |
|         | 1.40          | No trip       | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.45    | 7.20          | 7.35          | 14.70    | 22.05    | 29.39    | 36.74    | 44.09    | 51.44    | 58.79    |
|         | 6.00          | 10.68         | 21.36    | 32.04    | 42.72    | 53.40    | 64.08    | 74.77    | 85.45    |
|         | 5.00          | 15.59         | 31.18    | 46.78    | 62.37    | 77.96    | 93.55    | 109.14   | 124.74   |
|         | 4.00          | 25.00         | 50.01    | 75.01    | 100.02   | 125.02   | 150.03   | 175.03   | 200.04   |
|         | 3.00          | 47.22         | 94.45    | 141.67   | 188.89   | 236.12   | 283.34   | 330.56   | 377.79   |
|         | 2.00          | 132.36        | 264.73   | 397.09   | 529.45   | 661.82   | 794.18   | 926.54   | 1058.91  |
|         | 1.50          | 483.63        | 967.26   | 1450.89  | 1934.52  | 2418.15  | 2901.78  | 3385.41  | 3869.04  |
|         | 1.45          | No trip       | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |
| 1.50    | 7.20          | 7.88          | 15.75    | 23.63    | 31.50    | 39.38    | 47.25    | 55.13    | 63.01    |
|         | 6.00          | 11.45         | 22.91    | 34.36    | 45.82    | 57.27    | 68.73    | 80.18    | 91.64    |
|         | 5.00          | 16.74         | 33.48    | 50.22    | 66.96    | 83.70    | 100.43   | 117.17   | 133.91   |
|         | 4.00          | 26.90         | 53.80    | 80.69    | 107.59   | 134.49   | 161.39   | 188.29   | 215.19   |
|         | 3.00          | 51.06         | 102.12   | 153.18   | 204.24   | 255.30   | 306.36   | 357.42   | 408.48   |
|         | 2.00          | 146.73        | 293.45   | 440.18   | 586.90   | 733.63   | 880.35   | 1027.08  | 1173.81  |
|         | 1.50          | No trip       | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  | No trip  |

### **Parameter Settings**

# 

#### HAZARD OF MOTOR OVERHEATING

The Motor Trip Class parameter must be set to the thermal heating characteristics of the motor. Refer to the motor manufacturers instructions before setting this parameter.

Failure to follow these instructions can result in injury or equipment damage.

The thermal overload protection function has the following configurable settings:

| Parameter           | Setting range                                                                  | Default value |
|---------------------|--------------------------------------------------------------------------------|---------------|
| Function            | <ul> <li>Alarm</li> <li>Alarm + Trip</li> <li>Trip</li> <li>Disable</li> </ul> | Alarm + Trip  |
| Service Factor      | 1.00–1.50 in step of 0.05                                                      | 1.15          |
| Trip Class          | 5, 10, 15, 20, 25, 30, 35, 40                                                  | 10            |
| Alarm Level         | 80–100% of thermal memory in step of 5%                                        | 80% TM        |
| Reset Mode          | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | Auto          |
| Thermal Reset Level | 30–95% of thermal memory in step of 5%                                         | 90% TM        |
| Start Inhibit Level | 5–100% of thermal memory in step of 5%                                         | 90% TM        |
| Auxiliary Fan       | Disable     Enable                                                             | Disable       |
| Cool Down Function  | Disable     Enable                                                             | Disable       |
| Cool Down Time      | 0.0–6000.0 s in step of 0.1 s                                                  | 0.0 s         |
| Pause Function      | Disable     Enable                                                             | Disable       |
| Pause Time          | 0.0–6000.0 s in step of 0.1 s                                                  | 0.0 s         |
| Block Function      | Disable     Enable                                                             | Disable       |
| Block Level         | 80–95% of thermal memory in step of 5%                                         | 80%           |
| Block Time          | 0.0–6000.0 s in step of 0.1 s                                                  | 0.0 s         |

**NOTE:** When thermal overload protection is disabled, the thermal memory will increase and thermal inhibit will appear.

#### **Service Factor**

Service factor of the motor is configurable from 1.00 to 1.50 as per the motor name plate.

### **Trip Class**

Select the trip class as per the motor characteristics. The LTMT main unit provides thermal overload protection for eight different trip classes – Class 5, Class 10, Class 15, Class 20, Class 25, Class 30, Class 35, Class 40.

Refer to Trip Time Chart, page 94 for selection of trip class and service factor.

#### **Alarm Level**

Alarm level of thermal overload protection is configurable from 80% to 100% of thermal memory. The LTMT main unit generates the alarm signal once the thermal memory goes beyond the alarm level.

### **Thermal Reset Level**

Thermal overload trip can be reset if the thermal memory goes below the thermal reset level.

### **Start Inhibit Level**

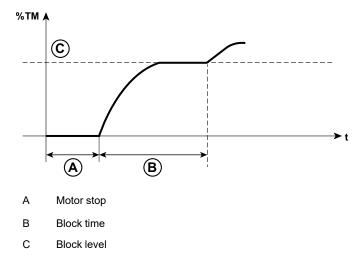
Start inhibit level is used to detect the thermal inhibit condition. If the thermal memory goes above the start inhibit level, the thermal inhibit cause is set.

**NOTE:** When the motor stops, thermal inhibit will appear.

#### **Cool Down Function**

Cool down function allows you to reset the thermal memory with configured cool down time.

If the cool down function is enabled and motor is tripped due to thermal overload, thermal memory resets to zero after cool down time has elapsed.


### **Pause Function**

Pause function allows you to reset the thermal memory with the configured pause time, if the motor is not tripped due to thermal overload.

If the pause function is enabled and the motor is not tripped due to thermal overload, thermal memory will reset to zero after the pause time has elapsed.

#### **Block Function**

Block function allows you to block the thermal overload protection for the configured block time during the motor start. This function blocks the thermal memory (TM) at the block level. For more information, refer to the below graphical representation.



#### **Auxiliary Fan**

If the auxiliary fan is enabled, thermal memory will cool down four times faster. This mode is not suitable with cool down function and pause function.

# **Locked Rotor**

# Description

The locked rotor protection function protects the motor during the start of the motor. The locked rotor condition occurs mainly due to excessive load or due to improper connection between the rotor and the shaft. The locked rotor protection function is active only during the start time of the motor.

The locked rotor protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes above the alarm level during the start of the motor.
- Trip: Any of the three-phase currents of the motor goes above the pickup level for the specified time delay during the start of the motor.

### **Parameter Setting**

The locked rotor protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip           |
| Pickup                                                   | 150–1000% of IFLC in step of 1%                                                | 200% of IFLC   |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 10 s           |
| Alarm :Level                                             | 150–1000% of IFLC in step of 1%                                                | 200% of IFLC   |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Stalled Rotor**

# Description

The stalled rotor condition occurs when the motor is in the Run state. The stalled rotor condition occurs due to overload or the load jam. The stalled rotor protection function is active only when the motor is in the Run state.

The stalled rotor protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes above the alarm level during the motor Run state.
- Trip: Any of the three-phase currents of the motor goes above the pickup level for the specified time delay during the motor Run state.

### **Parameter Setting**

The stalled rotor protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip           |
| Pickup                                                   | 50–1000% of IFLC in step of 1%                                                 | 200% of IFLC   |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 2 s            |
| Alarm Level                                              | 50–1000% of IFLC in step of 1%                                                 | 200% of IFLC   |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

## **Temperature Protection**

### Description

The TeSys Tera system supports temperature inputs:

• One temperature input on LTMT main unit, that can be configured as PT100 or PTC.

The temperature protection function generates the following signals:

- Alarm: Temperature value goes above the alarm level.
- Trip: Temperature value goes above the pickup level for the desired time delay.

### LTMT Main Unit Parameter Setting

The temperature protection function of the LTMT main unit has the following configurable settings:

| Parameter                                                            | Setting range                                                                  | Default value  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                             | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| PT100 pickup level (applicable if PT100 sensor is selected)          | 25.0–180.0 °C in step of 0.1 °C                                                | 130.0 °C       |
| Binary PTC pickup level<br>(applicable if PTC sensor is<br>selected) | 2700–4000 Ω in step of 1 Ω                                                     | 2700 Ω         |
| Binary PTC pickup reset                                              | 1600–2300 $\Omega$ in step of 1 $\Omega$                                       | 1600 Ω         |
| Time Delay                                                           | 0.1–6000.0 s in step of 0.1 s                                                  | 1 s            |
| PT100 alarm level (applicable if PT100 sensor is selected)           | 25.0–180.0 °C in step of 0.1 °C                                                | 130.0 °C       |
| Reset Mode                                                           | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto)             | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Current Protection Functions**

#### What's in This Chapter

| Definite Time Overcurrent  |     |
|----------------------------|-----|
| Normal Inverse Overcurrent |     |
| Short Time Overcurrent     |     |
| Phase Under Current        |     |
| Calculated Ground Fault    |     |
| Measured Ground Fault      |     |
| Current Imbalance          |     |
| Current Phase Reversal     | 110 |
| Current Phase Loss         | 111 |
|                            |     |

# **Definite Time Overcurrent**

### Description

The TeSys Tera system provides the definite time overcurrent protection when the motor is in the Start or Run state. There are two different configurable trip time delays, one for the motor start and another for the motor run state.

The definite time overcurrent protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes above alarm level.
- Trip during the motor Start state: Any of the three-phase currents of the motor goes above the pickup level for the specified motor start time delay.
- Trip during the motor Run state: Any of the three-phase currents of the motor goes above the pickup level for the specified motor run time delay.

### **Parameter Setting**

The definite time overcurrent protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Alarm + Trip</li> <li>Trip</li> </ul> | Trip           |
| Pickup                                                   | 20–1000% of IFLC in step of 1%                                                 | 110% of IFLC   |
| Time Delay During Motor Start $(T_{ps})$                 | 0.1–6000.0 s in step of 0.1 s                                                  | 30 s           |
| Time Delay During Motor Run<br>(T <sub>pr</sub> )        | 0.1–6000.0 s in step of 0.1 s                                                  | 20 s           |
| Alarm Level                                              | 20–1000% of IFLC in step of 1%                                                 | 110% of IFLC   |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Normal Inverse Overcurrent**

# Description

The TeSys Tera system provides the normal inverse (IEC class A – Standard inverse) overcurrent protection function.

The trip time of the normal inverse overcurrent protection is given by the formula:

T = TMS 
$$\left(\frac{k}{\left(\frac{1}{l_p}\right)^{\alpha}-1}\right)$$

Where:

- T = Trip time
- TMS = Time multiplier
- k and  $\alpha$  are the curve type constant. For standard inverse curve, k = 0.140 and  $\alpha$  = 0.020
- I = Actual current
- I<sub>p</sub>= Pick up current setting

The normal inverse overcurrent protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes above the alarm level.
- Trip: Any of the three-phase currents of the motor goes above the pickup level for the time derived from IEC class A curve and time delay (TMS) setting.

### **Parameter Setting**

The normal inverse overcurrent protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| Pickup                                                   | 20–1000% of IFLC in step of 1%                                                 | 50% of IFLC    |
| Time Delay (TMS)                                         | 0.1–20.0 s in step of 0.1 s                                                    | 0.1 s          |
| Alarm Level                                              | 20–1000% of IFLC in step of 1%                                                 | 50% of IFLC    |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Short Time Overcurrent**

### Description

The TeSys Tera system provides the definite time short time overcurrent protection function.

The short time overcurrent protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes above the alarm level.
- Trip: Any of the three-phase currents of the motor goes above the pickup level for the specified time delay.

# 

#### UNINTENDED EQUIPMENT OPERATION

- Starter function do not stop the motor by de-energizing the contactor output on occurrence of short time overcurrent trip.
- Configure the separate digital output for short time overcurrent trip, to control circuit breaker.
- · Common trip signal do not trip in case of short time over current.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

### **Parameter Setting**

The short time protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| Pickup                                                   | 100–1000% of IFLC in step of 1%                                                | 100% of IFLC   |
| Time Delay                                               | 0.05–10.00 s in step of 0.01 s                                                 | 0.05 s         |
| Alarm Level                                              | 100–1000% of IFLC in step of 1%                                                | 100% of IFLC   |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Phase Under Current**

# Description

The phase under current condition generally occurs when motor is running with no load.

The phase under current protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes below the alarm level.
- Trip: Any of the three-phase currents of the motor goes below the pickup level for the specified time delay.

### **Parameter Setting**

The phase under current protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value |
|----------------------------------------------------------|--------------------------------------------------------------------------------|---------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Alarm         |
| Pickup                                                   | 15–100% of IFLC in step of 1%                                                  | 50% of IFLC   |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 10 s          |
| Alarm Level                                              | 15–100% of IFLC in step of 1%                                                  | 50% of IFLC   |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | Auto          |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 5 s           |

# **Calculated Ground Fault**

### Description

The ground current is an imbalanced current flowing through the neutral of the three-phase system. In normal conditions, the ground current is negligible or null. It is present only when a ground fault occurs.

### **A A DANGER**

#### **IMPROPER TRIP DETECTION**

- Calculated ground fault protection function will not protect people from harm caused by ground current.
- Calculated ground fault pickup setting must be set to protect the motor and related equipment.
- Calculated ground fault settings must conform to national and local safety regulations and codes.

Failure to follow these instructions will result in death or serious injury.

The ground current is calculated internally by the LTMTCT/LTMTCTV sensor module. The calculated ground fault protection function generates the following signals:

- Alarm: Calculated ground current goes above the alarm level.
- Trip: Calculated ground current goes above the pickup level for the specified time delay.

The protection function can be disabled when the motor is in Start state, to avoid nuisance tripping.

NOTE:

- Calculated ground fault protection is not applicable in single-phase mode.
- Hysteresis is not applicable for calculated ground current by setting less than 10% of FLC.

#### **Parameter Setting**

The calculated ground fault protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip           |
| Pickup                                                   | 10–500% of IFLC in step of 1%                                                  | 20% of IFLC    |
| Time Delay                                               | 0.05–600.00 s in step of 0.01 s                                                | 0.2 s          |
| Alarm Level                                              | 10–500% of IFLC in step of 1%                                                  | 20% of IFLC    |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0–6000.0 s in step of 0.1 s                                                    | 0.0 s          |
| Function While Motor Starting                            | <ul><li>Disable</li><li>Enable</li></ul>                                       | Disable        |

# **Measured Ground Fault**

## Description

Measured ground fault is more accurate than calculated ground fault, it is calculated with the help of external core balanced current transformer. In normal conditions, the ground current is negligible or null. It is present only when a ground-trip occurs.

# **A A DANGER**

#### IMPROPER TRIP DETECTION

- Measured ground fault protection function will not protect people from harm caused by ground current.
- Measured ground fault pickup setting must be set to protect the motor and related equipment.
- Measured ground fault settings must conform to national and local safety regulations and codes.

Failure to follow these instructions will result in death or serious injury.

The measured ground-fault protection function generates the following signals:

- Alarm: Measured ground current goes above the alarm level.
- Trip: Measured ground current goes above the pickup level for the specified time delay.

The protection function can be disabled when the motor is in Start state, to avoid nuisance tripping.

**NOTE:** Hysteresis is not applicable for measured ground current by setting less than 10% of FLC.

### **Parameter Setting**

The measured ground fault protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| Pickup                                                   | 20–20000 mA in step of 10 mA                                                   | 30 mA          |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s          |
| Alarm Level                                              | 20–20000 mA in step of 10 mA                                                   | 30 mA          |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |
| Function While Motor Starting                            | <ul><li>Disable</li><li>Enable</li></ul>                                       | Disable        |

## **Current Imbalance**

### Description

The current imbalance protection function generates the following signals:

- Alarm: Current imbalance goes above the alarm level.
- Trip: Current imbalance goes above the pickup level for the specified time delay.

**NOTE:** Current imbalance protection function is not applicable in single-phase mode.

### **Parameter Setting**

## **A**CAUTION

#### HAZARD OF MOTOR OVERHEATING

- The current imbalance pickup setting must be properly set to protect the wiring and motor equipment from harm caused by motor overheating.
- The setting you input must conform to national and local safety regulations and codes.
- Refer to the motor manufacturer's instructions before setting this parameter.

Failure to follow these instructions can result in injury or equipment damage.

The current imbalance protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Alarm + Trip   |
| Pickup                                                   | 5–100% in step of 5%                                                           | 20%            |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 5 s            |
| Alarm Level                                              | 5–100% in step of 5%                                                           | 20%            |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

## **Current Phase Reversal**

### Description

The current phase reversal protection function helps to identify the wrong wiring of three-phase motor.

The current phase reversal protection function generates the following signals:

- Alarm: If the detected current phase sequence is not matching with the phase rotation setting , page 46.
- Trip: If the detected current phase sequence is not matching with the phase rotation setting, for the specified time delay.

**NOTE:** Current phase reversal is not applicable in single-phase mode.

### **Parameter Setting**

The current phase reversal protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Alarm + Trip</li> <li>Trip</li> </ul> | Trip           |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s          |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

### **Current Phase Loss**

### Description

The current phase loss protection function generates the following signals:

- Alarm: Any of the three-phase currents of the motor goes below 10% of the motor full load current.
- Trip: Any of the three-phase currents of the motor goes below 10% of the motor full load current for the specified time delay.

#### NOTE:

- 1. Current phase loss protection function is not applicable in single-phase mode.
- 2. Current values that are less than 10% of FLC are considered as stop, and no value is displayed in metering and trip logs.

#### **Parameter Setting**

The current phase loss protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip           |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s          |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Voltage Protection Functions**

#### What's in This Chapter

| Phase Under Voltage    | 113 |
|------------------------|-----|
| Phase Over Voltage     |     |
| /oltage Imbalance      |     |
| /oltage Phase Reversal |     |
| /oltage Phase Loss     |     |

# **Phase Under Voltage**

### Description

The phase under voltage protection function generates the following signals:

- Alarm: Any of the line-to-line voltage goes below the alarm level.
- Trip: Any of the line-to-line voltage goes below the pickup level for the specified time delay.

NOTE: This function enables after 500 ms once the voltage is detected.

### **Parameter Setting**

The phase under voltage protection function has the following configurable settings:

| Parameter                                                      | Setting range                                                                  | Default value          |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|
| Function                                                       | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip                   |
| Pickup                                                         | 20–100% of nominal voltage in step of 1%                                       | 80% of nominal voltage |
| Time Delay                                                     | 0.1–6000.0 s in step of 0.1 s                                                  | 10 s                   |
| Alarm Level                                                    | 20–100% of nominal voltage in step of 1%                                       | 80% of nominal voltage |
| Reset Mode                                                     | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | Auto                   |
| Auto-Reset Delay<br>(applicable only if Reset<br>mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s                    |

## **Phase Over Voltage**

### Description

The phase over voltage protection function generates the following signals:

- Alarm: Any of the line-to-line voltage goes above the alarm level.
- Trip: Any of the line-to-line voltage goes above the pickup level for the specified time delay.

### **Parameter Setting**

The phase over voltage protection function has the following configurable settings:

| Parameter                                                      | Setting range                                                                  | Default value           |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------|
| Function                                                       | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> </ul>                       | Trip                    |
|                                                                | • Alarm + Trip                                                                 |                         |
| Pickup                                                         | 101–130% of nominal voltage in step of 1%                                      | 110% of nominal voltage |
| Time Delay                                                     | 0.1–6000.0 s in step of 0.1 s                                                  | 5 s                     |
| Alarm Level                                                    | 101–130% of nominal voltage in step of 1%                                      | 110% of nominal voltage |
| Reset Mode                                                     | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key          |
| Auto-Reset Delay<br>(applicable only if Reset<br>mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s                     |

## **Voltage Imbalance**

### Description

The voltage imbalance protection function generates the following signals:

- Alarm: Voltage imbalance goes above the alarm level.
- Trip: Voltage imbalance goes above the pickup level for the specified time delay.
  - **NOTE:** Voltage imbalance is not applicable in single-phase mode.

### **Parameter Setting**

The voltage imbalance protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value          |
|----------------------------------------------------------|--------------------------------------------------------------------------------|------------------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Alarm + Trip           |
| Pickup                                                   | 5–50% of nominal voltage in step of 5%                                         | 10% of nominal voltage |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 10 s                   |
| Alarm Level                                              | 5–50% of nominal voltage in step of 5%                                         | 10% of nominal voltage |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key         |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s                    |

## **Voltage Phase Reversal**

### Description

The voltage phase reversal protection function helps to identify the wrong wiring of three-phase voltage.

The voltage phase reversal protection function generates the following signals:

- Alarm: If the detected voltage phase sequence is not matching with the phase rotation setting , page 46.
- Trip: If the detected voltage phase sequence is not matching with the phase rotation setting, for the specified time delay.

**NOTE:** Voltage phase reversal is not applicable in single-phase mode.

### **Parameter Setting**

The voltage phase reversal protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip           |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s          |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

## **Voltage Phase Loss**

### Description

The voltage phase loss trip is activated, when one of the voltage phase is lost.

The voltage phase loss protection function generates the following signals:

- Alarm: Voltage imbalance goes above 38%.
- Trip: Voltage imbalance goes above 38% for the specified time delay. Voltage phase loss is not applicable in single-phase mode.

### **Parameter Setting**

The voltage phase loss protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Trip           |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s          |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Power Protection Functions**

#### What's in This Chapter

| Over Frequency     | . 119 |
|--------------------|-------|
| Under Frequency    |       |
| Over Power         |       |
| Under Power        | . 122 |
| Under Power Factor | . 123 |

## **Over Frequency**

### Description

The over frequency protection function generates the following signals:

- Alarm: Measured frequency goes above the alarm level.
- Trip: Measured frequency goes above the pickup level for the specified time delay.

### **Parameter Setting**

The over frequency protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value             |
|----------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable                   |
| Pickup                                                   | 100–110% of nominal frequency in step of 1%                                    | 105% of nominal frequency |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s                     |
| Alarm Level                                              | 100–110% of nominal frequency in step of 1%                                    | 105% of nominal frequency |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key            |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s                       |

## **Under Frequency**

### Description

The under frequency protection function generates the following signals:

- Alarm: Measured frequency goes below the alarm level.
- Trip: Measured frequency goes below the pickup level for the specified time delay.

NOTE: This function enables after 500 ms once the voltage is detected.

### **Parameter Setting**

The under frequency protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value            |
|----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable                  |
| Pickup                                                   | 90–100% of nominal frequency in step of 1%                                     | 94% of nominal frequency |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s                    |
| Alarm Level                                              | 90–100% of nominal frequency in step of 1%                                     | 94% of nominal frequency |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key           |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s                      |

### **Over Power**

### Description

The over power protection function generates the following signals:

- Alarm: Measured active power goes above the alarm level.
- Trip: Measured active power goes above the pickup level for the specified time delay.

### **Parameter Setting**

The over power protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value         |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|--|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable               |  |
| Pickup                                                   | 20–1000% of nominal power in step of 1%                                        | 110% of nominal power |  |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s                 |  |
| Alarm Level                                              | 20–1000% of nominal power in step of 1%                                        | 110% of nominal power |  |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key        |  |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s                   |  |

### **Under Power**

## Description

The under power protection function generates the following signals:

- Alarm: The measured active power goes below the alarm level.
- Trip: The measured active power goes below the pickup level for the specified time delay.

NOTE: This function enables after 500 ms once the voltage is detected.

### **Parameter Setting**

The under power protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value        |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable              |
| Pickup                                                   | 20–1000% of nominal power in step of 1%                                        | 60% of nominal power |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s                |
| Alarm Level                                              | 20–1000% of nominal power in step of 1%                                        | 60% of nominal power |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key       |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0.0 s                |

## **Under Power Factor**

### Description

The under power factor protection function generates the following signals:

- Alarm: Power factor  $(\cos \phi)$  goes below the alarm level.
- Trip: Power factor (cos  $\boldsymbol{\varphi})$  goes below the pickup level for the specified time delay.
  - NOTE: This function enables after 500 ms once the voltage is detected.

### **Parameter Setting**

The under power factor protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| Pickup                                                   | 0.40–1.00 in step of 0.01                                                      | 0.6 PF         |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0.1 s          |
| Alarm Level                                              | 0.40–1.00 in step of 0.01                                                      | 0.6 PF         |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Digital Input Interlock**

# Description

Any digital input of LTMT main unit or LTMT expansion unit can be configured as interlock, helps to prevent start of motor in absence of required digital inputs. Similarly, the respective interlock protection, if enabled, trips the motor in the absence of interlock. Maximum of 12 digital inputs can be used as interlock (1-12) and each interlock is provided with the protection function.

The interlock input can be assigned as a function such as alarm or trip which will be perfomed on the absence of that interlock. The interlock configured as trip causes the LTMT main unit to trip in the event of absence of the corresponding interlock.

The digital input interlock protection function generates the following signals:

- Alarm: When digital input interlock status is in the low state.
- Trip: When digital input interlock status is in the low state for the specified time delay.

## **Parameter Setting**

Each digital input interlock protection function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul> <li>Disable</li> <li>Alarm</li> <li>Trip</li> <li>Alarm + Trip</li> </ul> | Disable        |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 0 s            |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |

# **Motor Control Functions**

#### What's in This Part

| Motor Control Station   |  |
|-------------------------|--|
| Motor Starter Functions |  |
| Motor Control Function  |  |

# **Motor Control Station**

#### What's in This Chapter

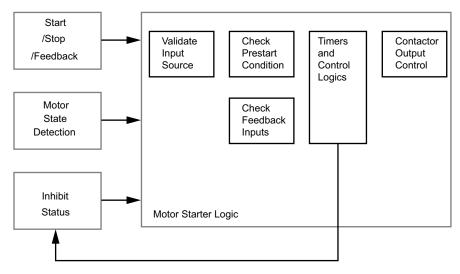
| Overview                                |  |
|-----------------------------------------|--|
| Working Principle of the Motor Starters |  |
| Motor Starter Settings                  |  |
| Operating Modes                         |  |
| Digital Inputs                          |  |
| Diğital Outputs                         |  |
|                                         |  |

### **Overview**

The TeSys Tera system provides the motor starter functions that helps to reduce the wiring and external components like starters or timers. With the TeSys Tera system motor starter functions, the motor can be directly controlled through the contactors.

### **Working Principle of the Motor Starters**

### **A**WARNING


#### UNINTENDED EQUIPMENT OPERATION

- The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.
- Change in Load type or Starter type can cause short circuit or turn on power supply to the load.
- Check if appropriate wiring is done according to the Load type or Starter type.
- Make sure that the motor power supply is cut off while changing the starter settings, digital input settings, and digital output settings.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Based on the application requirements, different types of motor starters are used to switch the motor on or off. There are different types of motors with different wiring connections available for controlling the motor as per the application. The TeSys Tera system provides option to choose the right motor starters to control the motor for different types of application.

The following diagram shows the block diagram of TeSys Tera motor starter.



Once the Start or Stop input command is received, the motor starter logic validates the input source. Based on the selected operating mode, the Start or Stop command is performed. The motor starter logic checks the pre-start conditions (inhibit status and motor status). Depending on the selected starter type, the motor starter logic runs the control logics and updates the contactor control output and the inhibit status.

The inputs and outputs of the motor starter logic are user configurable. The TeSys Tera system allows you to customize the motor starter logic by addition of custom logics before or/and after the motor starter logic. See the following block diagram for example.

| Input | Custom<br>Logic | Motor<br>Starter<br>Logic | Custom<br>Logic | Output |
|-------|-----------------|---------------------------|-----------------|--------|
|-------|-----------------|---------------------------|-----------------|--------|

For more information on the custom logic editor, refer to the *TeSys Tera Motor Management System DTM Library Online Help Guide – DOCA0275EN*.

### **Motor Starter Settings**

TeSys Tera system supports most of the starter logics with the inbuild starter logics and external inputs (start, stop, feedback, and so on) and switches the motor on or off with external contactors.

Motor start and stop is possible from LTMTCUF control operator unit (HMI), local control (Local DI), panel control (Remote DI), and communication (PLC or DCS). Motor starter logics also consider the feedback, such as, the contactor open or close status, and motor current to control the contactor. As per the starter selected, the required CONTACTOR\_OUTPUT will be used for contactor control.

#### **Parameter Settings**

## 

#### UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.

# Failure to follow these instructions can result in death, serious injury, or equipment damage.

The motor starter settings can be set up using following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

| Parameter      | Setting range                                                                                                                                                    | Default value                  |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Starter Type   | <ul> <li>Direct Online</li> <li>Reverse Direct Online</li> <li>Star-Delta</li> <li>Custom logic 256 to Custom<br/>logic 511</li> </ul>                           | Direct Online                  |
| Mode Selection | <ul> <li>Disable</li> <li>HMI</li> <li>DI</li> <li>Communication</li> </ul>                                                                                      | Disable                        |
| Local 1 Start  | <ul> <li>None</li> <li>Selection of a combination of<br/>the 5 control sources: HMI,<br/>Local DI, Remote DI,<br/>Communication, and Custom<br/>logic</li> </ul> | Communication + Local DI + HMI |
| Local 2 Start  | <ul> <li>None</li> <li>Selection of a combination of<br/>the 5 control sources: HMI,<br/>Local DI, Remote DI,<br/>Communication, and Custom<br/>logic</li> </ul> | None                           |
| Local 3 Start  | <ul> <li>None</li> <li>Selection of a combination of<br/>the 5 control sources: HMI,<br/>Local DI, Remote DI,<br/>Communication, and Custom</li> </ul>           | None                           |

| Remote Start                   | None                                                                                                                                     | None                           |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                | Selection of a combination of<br>the 5 control sources: HMI,<br>Local DI, Remote DI,<br>Communication, and Custom                        |                                |
| Local 1 Stop                   | • None                                                                                                                                   | Communication + Local DI + HMI |
|                                | Selection of a combination of<br>the 5 control sources: HMI,<br>Local DI, Remote DI,<br>Communication, and Custom                        |                                |
| Local 2 Stop                   | None                                                                                                                                     | None                           |
|                                | <ul> <li>Selection of a combination of<br/>the 5 control sources: HMI,<br/>Local DI, Remote DI,<br/>Communication, and Custom</li> </ul> |                                |
| Local 3 Stop                   | None                                                                                                                                     | None                           |
|                                | <ul> <li>Selection of a combination of<br/>the 5 control sources: HMI,<br/>Local DI, Remote DI,<br/>Communication, and Custom</li> </ul> |                                |
| Remote Stop                    | None                                                                                                                                     | None                           |
|                                | <ul> <li>Selection of a combination of<br/>the 5 control sources: HMI,<br/>Local DI, Remote DI,<br/>Communication, and Custom</li> </ul> |                                |
| Local DI Start Input           | Momentary                                                                                                                                | Momentary                      |
|                                | Maintained                                                                                                                               |                                |
| Remote DI Start<br>Input       | <ul><li>Momentary</li><li>Maintained</li></ul>                                                                                           | Momentary                      |
| Custom Start Input             | Momentary     Maintained                                                                                                                 | Momentary                      |
| Mode Transfer                  | Bump                                                                                                                                     | Bump                           |
|                                | Bumpless                                                                                                                                 |                                |
| Communication<br>Start Input   | <ul><li>Momentary</li><li>Maintained</li></ul>                                                                                           | Momentary                      |
| Change Direction               | <ul><li>Disable</li><li>Enable</li></ul>                                                                                                 | Disable                        |
| Interlocking Time <sup>6</sup> | 0.01 to 600.00 s in step of 0.01 s                                                                                                       | 60.00 s                        |
| Feedback<br>Response Time      | 0.01 to 600.00 s in step of 0.01 s                                                                                                       | 0.5 s                          |
| Current Sensing<br>Time        | 0.01 to 600.00 s in step of 0.01 s                                                                                                       | 0.5 s                          |
| Time in Star                   | 0.01 to 600.00 s in step of 0.01 s                                                                                                       | 10 s                           |
| Change Over Time               | 0.01 to 600.00 s in step of 0.01 s                                                                                                       | 0.3 s                          |
| Stop Detection                 | <ul><li>Current based</li><li>DI + Current based</li></ul>                                                                               | Current Based                  |
| Forced Start<br>Function       | Disable     Enable                                                                                                                       | Disable                        |

<sup>6.</sup> For the proper functioning of this functionality, the settings of the interlocking time must be greater than the contactor opening time of the system connected.

### Local and Remote Start Input Type

The Local DI Start Input parameter defines the type of command provided by the digital inputs used to start and stop the motor in Local 1, Local 2, or Local 3 operating mode.

The start switch input from the drawer or panel can be configured as Local start DI.

The Remote DI Start Input parameter defines the type of command provided by the digital inputs used to start and stop the motor in Remote operating mode.

The start input from control panel can be configured as Remote start DI.

Both parameters can be set separately to:

- Momentary (default value): Two digital inputs are required to deliver the start and stop commands of the motor:
  - One digital input for the Start command, triggered by a rising edge (if the input type is set as active high) or a falling edge (if the input type is set as active low) on the Start digital inputs as per the selected motor starter type.
  - One digital input for the Stop command, triggered by a rising edge (if the input type is set as active high) or a falling edge (if the input type is set as active low) on the Stop digital inputs as per the selected motor starter type.
- Maintained: Only one digital input is required to deliver the start and stop commands of the motor. Only digital inputs for the Start commands must be assigned as per the selected motor starter type. It is not required to assign a digital input to the Stop command.

#### **Custom Start Input Type**

The Custom Start Input parameter defines the type of command provided by the custom inputs used to start and stop the motor with the customized program. The parameter can be set to:

- Momentary (default value): Two custom inputs are required to deliver the start and stop commands of the motor.
- Maintained: Only one custom input is required to deliver the start and stop commands of the motor. Only custom inputs for Start commands must be programmed as per the selected motor starter type. It is not required to program a custom input for the Stop command.

#### **Communication Start Input Type**

Communication start input type defines the behavior of start and stop command from PLC or DCS. The parameter can be set to:

- Momentary (default value): Separate start and stop commands are required from PLC or DCS.
- Maintained: Only one command is required from PLC or DCS to start or stop the motor.

#### **Feedback Timeout Detection**

Feedback timeout detection function is used to check if the motor starts after activation of the RUN output. After activation of the RUN output, feedback timeout is detected if:

The motor current is not detected (IMAX < 10% IFLC) within the configured motor current sensing time.

 The motor stop detection is configured as DI+IFLC, and if the status of the digital input assigned to the optional RUN DI has not changed within the configured feedback response time.

Feedback timeout detection is a stop cause of motor starters.

#### Feedback Response Time

This time is used by feedback timeout function, to stop the motor by deactivating RUN (CONTACTOR OUTPUT), in case of no detection of RUN DI (Contactor feedback signal) within configured feedback response time.

**NOTE:** Configure Stop detection setting as Current based+DI and one of the Digital input as RUN DI to enable the feedback response time functionality.

### **Current Sensing Time**

This time is used by feedback timeout function, to stop the motor by deactivating RUN (CONTACTOR OUTPUT), in case of no detection of motor current within configured current sensing time.

### **Auto-Stop Detection**

Auto-stop detection function is used to detect that the motor has stopped while the RUN output is still activated.

User can select the auto-stop detection mode:

- Current based: Auto-stop detected if motor current IMAX < 5% IFLC.
- Current based + DI (default value):
  - If RUN DI (Contactor feedback) is configured: Auto stop is detected only if RUN DI indicates that the contactor is open.
  - If RUN DI is not configured: Auto stop is detected if motor current IMAX < 5% IFLC.</li>

Auto-stop detection is a stop cause of motor starters. On detection of Auto-stop, TeSys Tera motor starter logic deactivates the RUN (CONTACTOR OUTPUT).

#### **RUN DI Assignment**

The feedback timeout and the auto-stop detection can use a digital input assigned to RUN DI to get the feedback of the contactor.

The contactor contacts to wire in parallel to the digital input assigned to RUN DI depends on the motor starter type:

- Direct Online: KM1
- Reversible Direct Online: KM1 and KM2
- Star-Delta: KM1 (no detection of the KM2 and KM3 feedback)

**NOTE:** TeSys Tera system only supports one feedback (RUN DI), the feedback signals from other contactors must be connected parallel to one (RUN DI) using the appropriate external interlocks for starts other than direct online starters.

#### **Transfer Mode**

In Bump mode, if you change the mode when motor is running, then the motor will stop. For example, if you change mode from Local 1 to Remote, motor will stop.

In Bumpless mode, the motor operation remains uninterrupted even after the mode is changed.

### **Change Direction**

The change direction logic is applicable to the Reverse Direct Online starter type.

TeSys Tera system can change direction from forward to reverse and reverse to forward according to one of two logics:

- Logic with Change direction parameter set to Enable. This logic does not require a Stop command.
  - If a Reverse Start command from a valid source is received while the motor is running forward, TeSys Tera system deactivates the forward contactor and starts the Interlock timer. Once the Interlock timer is elapsed, the TeSys Tera system activates the reverse contactor.
  - If a Forward Start command from a valid source is received while the motor is running reverse, TeSys Tera system deactivates the reverse contactor and starts the Interlock timer. Once the Interlock timer is elapsed, the TeSys Tera system activates the forward contactor.

**NOTE:** The settings of the interlocking time must be greater than the contactor opening time of the system connected.

• Logic with Change direction parameter set to Disable. This logic requires a Stop command from a valid source as per the selected operating mode, Operating Modes, page 134. The Stop command starts the Interlock timer. Once the Interlock timer is elapsed, the motor can be started by a Start command in another direction.

### **Changeover Time**

The changeover time is applicable to the Star-Delta starter types.

In Star-Delta , the changeover time is used to switch from Star to Delta connection. After the time in Star has elapsed, the TeSys Tera starter logic deactivates the Star CONTACTOR OUTPUT and waits for the changeover time to elapse. Once the changeover time has elapsed, theTeSys Tera starter logic activates the Delta CONTACTOR OUTPUT.

### **Operating Modes**

User can configure the motor control source for four operating modes:

- Local 1 (L1)
- Local 2 (L2)
- Local 3 (L3)
- Remote (R)

TeSys Tera system allows motor Start or Stop commands from the following control sources:

- **HMI:** Start or Stop commands from the LTMTCUF control operator unit or TeSys Tera DTM.
- Local DI (L-Start/L-Stop): Start or Stop commands from a local control panel near to the motor, connected to TeSys Tera digital inputs.
- **Remote DI (R-Start/R-Stop):** Start or Stop commands from a remote control panel, connected to TeSys Tera digital inputs.
- **Communication:** Start or Stop commands from a PLC or DCS via the communication network.
- Custom: Start or Stop commands from the custom logic.

The following table shows an example of selection of motor control source for different operating modes. In this example, the motor can be started and stopped:

- In Local 1 operating mode from local DI and HMI.
- In Local 2 operating mode from local DI.
- In Local 3 operating mode from local DI and HMI.
- · In Remote operating mode from remote DI and communication.

| Motor   | Operating | Motor control source |          |           |                    |        |
|---------|-----------|----------------------|----------|-----------|--------------------|--------|
| control | modes     | нмі                  | Local DI | Remote DI | Communi-<br>cation | Custom |
| Start   | Local 1   | 1                    | 1        | x         | x                  | x      |
|         | Local 2   | x                    | 1        | x         | x                  | x      |
|         | Local 3   | 1                    | 1        | x         | x                  | x      |
|         | Remote    | x                    | x        | 1         | 1                  | x      |
| Stop    | Local 1   | 1                    | 1        | x         | x                  | x      |
|         | Local 2   | x                    | 1        | x         | x                  | x      |
|         | Local 3   | 1                    | 1        | x         | x                  | x      |
|         | Remote    | x                    | x        | 1         | 1                  | x      |

#### **Operating Mode Selection**

Only one operating mode is activated at a time.

The active operating mode can be selected through HMI, digital inputs or communication, based on the mode selection setting.

**NOTE:** If the **Mode Selection** setting is **Disable**, Local 1 operating mode is selected.

### **Operating Mode Selection Through HMI**

If the mode selection setting is **HMI**, then the selection of Local 1, Local 2, Local 3 and Remote operating mode can be done from LTMTCUF control operator unit. You can select the required operating mode from the control unit by pressing the

**Local/Remote** key while the **Home** screen is displayed. Once the operating mode is selected from the control unit, the mode will remain the same until the user changes it to other mode.

### **Operating Mode Selection Through Digital Inputs**

If the mode selection setting is **DI**, then the operating mode is selected through the digital inputs assigned to **Mode Selection 1** and/or **Mode Selection 2**. You can configure minimum one DI in DI setting using the TeSys Tera DTM.

The following mode selection combinations are possible through DI:

Only one DI is assigned to Mode Selection 1 in DI settings:

| Operating mode | Mode Selection 1 DI |
|----------------|---------------------|
| Local 1        | OFF                 |
| Remote         | ON                  |

• Only one DI is assigned to Mode Selection 2 in DI settings:

| Operating mode | Mode Selection 2 DI |
|----------------|---------------------|
| Local 1        | OFF                 |
| Local 2        | ON                  |

Two DI are assigned to Mode Selection 1 and Mode Selection 2 in DI settings:

| Operating mode | Mode Selection 1 DI | Mode Selection 2 DI |
|----------------|---------------------|---------------------|
| Local 1        | OFF                 | OFF                 |
| Remote         | ON                  | OFF                 |
| Local 2        | OFF                 | ON                  |
| Local 3        | ON                  | ON                  |

### **Operating Mode Selection Through Communication**

If the mode selection setting is **Communication**, then the operating mode is selected by setting the Operating mode selection bits accordingly. For more information, refer to the appropriate TeSys Tera communication guide , page 10.

| Operating mode | Mode Selection 1 Bit | Mode Selection 2 Bit |
|----------------|----------------------|----------------------|
| Local 1        | 0                    | 0                    |
| Remote         | 1                    | 0                    |
| Local 2        | 0                    | 1                    |
| Local 3        | 1                    | 1                    |

## **Digital Inputs**

## 

#### UNINTENDED MACHINE OPERATION

- Change in DI settings can cause short circuit or turn on power supply to the load.
- Check if appropriate wiring is done according to the DI settings.
- Ensure that the three-phase power supply is cut off while changing the DI settings.

# Failure to follow these instructions can result in death, serious injury, or equipment damage.

The TeSys Tera system supports maximum of 24 digital inputs:

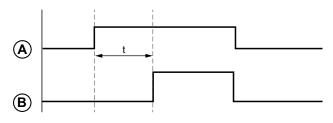
- Four digital inputs on LTMT main units.
- Up to 20 digital inputs with LTMT expansion units.

### **Input Configuration**

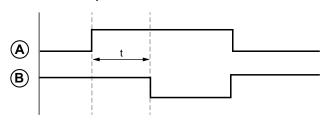
The configuration of the digital inputs can be made through one of the following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

Each digital input has the following parameters:


| Parameter       | Setting range                                    |
|-----------------|--------------------------------------------------|
| Trigger type    | <ul><li>Active high</li><li>Active low</li></ul> |
| Validation time | 0 to 60000 ms in step of 10 ms                   |
| Input source    | See list in input assignment                     |

The digital inputs are set by default depending on the motor starter type selected.


### Input Type

The Active type and Validation time (t) parameters defines how the physical information connected to the input (A) is converted in the digital input information (B) processed by the LTMT main unit.

#### **Active High Inputs**



#### **Active Low Inputs**



## Input Assignment

| Input source      | Description                                                                                                    |  |
|-------------------|----------------------------------------------------------------------------------------------------------------|--|
| Other             | Do not use, reserved for future programmable feature.                                                          |  |
| Trip Reset DI     | Used to configure the digital input for trip reset.                                                            |  |
| Breaker Close DI  | Used in custom logic to customize the application. This input is not directly used by the motor starter logic. |  |
| Breaker Open DI   | Used in custom logic to customize the application. This input is not directly used by the motor starter logic. |  |
| Local-START> DI   | Local Forward Start command.                                                                                   |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Local-START>> DI  | Local Fast Forward (Forward High speed) Start command.                                                         |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Local-STOP DI     | Local Stop command.                                                                                            |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Local-START< DI   | Local Reverse Start command.                                                                                   |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Local-START<< DI  | Local Fast Reverse (Reverse High speed) Start command.                                                         |  |
|                   | Used by starter module as per the selected starter type.                                                       |  |
| Remote-START> DI  | Remote Forward Start command.                                                                                  |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Remote-START>> DI | Remote Fast Forward (Forward High speed) Start command.                                                        |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Remote-STOP DI    | Remote Stop command.                                                                                           |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Remote-START< DI  | Remote Reverse Start command.                                                                                  |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Remote-START<< DI | Remote Fast Reverse (Reverse High speed) Start command.                                                        |  |
|                   | Used by the motor starter logic as per the selected starter type.                                              |  |
| Interlock 1       | Up to 12 digital inputs can be configured as interlocks.                                                       |  |
| Interlock 2       | These interlock inputs are used by:                                                                            |  |
| Interlock 3       | Motor starter logic to inhibit motor start, page 77.                                                           |  |
| Interlock 4       | Digital input interlock protection function, page 124.                                                         |  |
| Interlock 5       | _                                                                                                              |  |
| Interlock 6       | _                                                                                                              |  |
| Interlock 7       | 4                                                                                                              |  |
| Interlock 8       | _                                                                                                              |  |
| Interlock 9       |                                                                                                                |  |

| Input source           | Description                                                                                                      |  |
|------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Interlock 10           |                                                                                                                  |  |
| Interlock 11           |                                                                                                                  |  |
| Interlock 12           |                                                                                                                  |  |
| Contactor open DI      | Used in custom logic to customize the application.                                                               |  |
|                        | This input is not directly used by the motor starter logic.                                                      |  |
| Run DI                 | Used by the motor starter logic to check the contactor/RUN feedback.                                             |  |
| Block Input            | Used for co-ordination purpose. If the block input is present, the TeSys Tera system will block the trip output. |  |
| Logic test DI          | Used to perform logic tests, page 82.                                                                            |  |
| Mode selection 1       | Used to select the operating mode: Local 1, Local 2, Local 3 or                                                  |  |
| Mode selection 2       | Remote, page 134.                                                                                                |  |
| Forced start           | Used by forced start function, page 151.                                                                         |  |
| Forced stop            | Used by the motor starter logic as forced stop.                                                                  |  |
| Self test without trip | Used by test function.                                                                                           |  |
| Self test with trip    | Used by test function.                                                                                           |  |
| None                   | -                                                                                                                |  |

# **Digital Outputs**

# **A**WARNING

#### UNINTENDED MACHINE OPERATION

- Change in DO settings can cause short circuit or turn on power supply to the load.
- Check if appropriate wiring is done according to the DO settings.
- Ensure that the three-phase power supply is cut off while changing the DO settings.

# Failure to follow these instructions can result in death, serious injury, or equipment damage.

The TeSys Tera system supports maximum of 13 digital outputs:

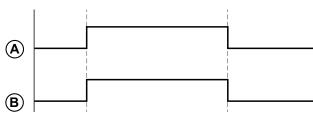
- Three digital outputs on LTMT main units.
- Up to 10 digital outputs with LTMT expansion units.

## **Output Configuration**

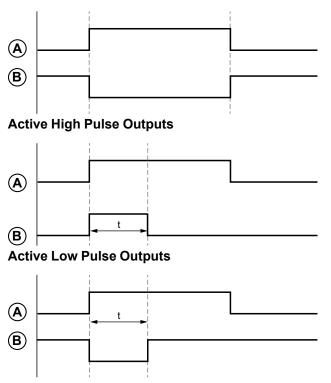
The configuration of the digital outputs can be made through one of the following interfaces:

- A PC running the TeSys Tera DTM embedded in a FDT container such as SoMove software.
- The LTMTCUF control operator unit.
- A PLC or DCS through the communication network.

Each digital output has the following parameters:


| Parameter    | Setting range                 |
|--------------|-------------------------------|
| Active type  | Active high     Active low    |
| Output type  | Level     Pulse               |
| Pulse time   | 0 to 60000 ms in step of 1 ms |
| Input source | See list in input source      |

The digital outputs are set by default depending on the motor starter type selected.


## Output Type

The Active type, Output type, and Pulse time (t) parameters defines how the output information (A) is processed by the LTMT main unit and is converted in the physical information transmitted by the relay output (B).

#### Active High Level Outputs



#### **Active Low Level Outputs**



### **DO Input Source**

The most used input sources are indicated in the following table:

| Index | Input source               |  |
|-------|----------------------------|--|
| 232   | Pickup status              |  |
| 233   | Alarm status               |  |
| 234   | Trip status                |  |
| 235   | Motor stop error detection |  |
| 504   | CONTACTOR OUTPUT 1         |  |
| 505   | CONTACTOR OUTPUT 2         |  |
| 506   | CONTACTOR OUTPUT 3         |  |
| 507   | CONTACTOR OUTPUT 4         |  |
| 508   | CONTACTOR OUTPUT 5         |  |

Refer to Input Source, page 191 in Appendices for the complete list of input source.

# **Motor Starter Functions**

#### What's in This Chapter

| Direct Online                  |     |
|--------------------------------|-----|
| Reverse Direct Online          |     |
| Star Delta                     |     |
| Forced Start Function          | 151 |
| Single Phase Motor Application |     |
|                                |     |

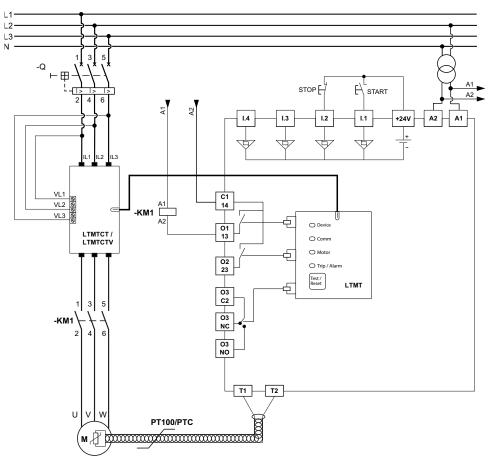
# **A**WARNING

#### UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and programming of control systems. Only personnel with such expertise should be allowed to program, install, configure, alter and apply this product. Follow all local and national safety codes and standards.

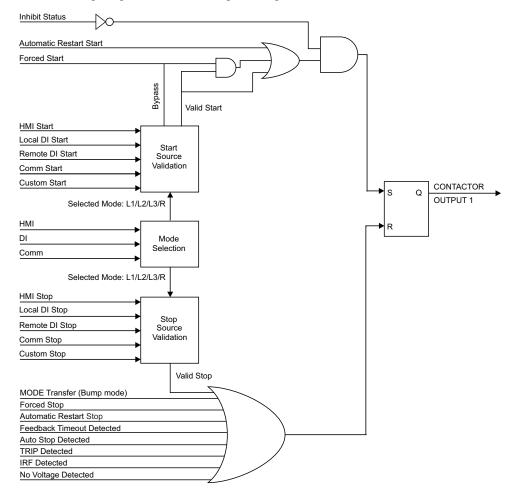
Failure to follow these instructions can result in death, serious injury, or equipment damage.

## **Direct Online**


### Description

The Direct Online starter requires the following digital inputs and outputs:

- Two digital inputs for motor local start and local stop.
- One digital output for motor RUN command CONTACTOR OUTPUT 1.


### Wiring Diagram

Example of wiring diagram of the TeSys Tera system in Direct Online mode:



KM1: CONTACTOR OUTPUT 1

### **Logical Diagram**



#### The following diagram shows the logical diagram of Direct Online starter.

#### **Operating Principle**

When Direct Online mode is selected, motor start is possible from one of the following sources:

- Start command from valid source as per the selected operating mode, page 134.
- Start command from Forced start function, page 151.
- · Start command from automatic restart function, page 159.

If a start command is received from either of the above source and if the motor is **Ready to Start** (that is no inhibit cause detected, page 77), then TeSys Tera system activates the CONTACTOR OUTPUT 1.

TeSys Tera system deactivates CONTACTOR OUTPUT 1, if any of the following motor stop cause is detected:

- Stop command from valid source as per the selected operating mode, page 134.
- Stop command from a digital input assigned to Forced stop (optional), refer to Input Assignment, page 137.
- Stop command from automatic restart function, page 159.
- Feedback timeout detected, page 131.
- Auto stop detected, page 132.
- Trip detected.
- Device Internal Error Detected, page 79.

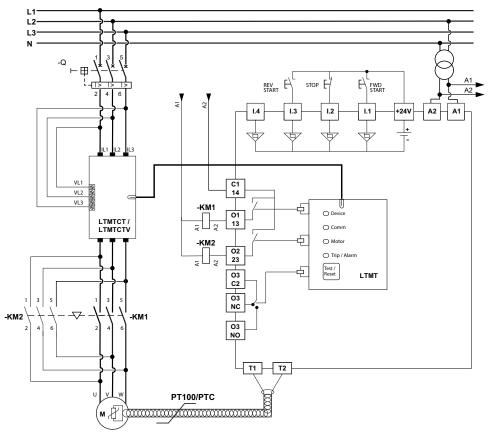
## **DI/DO Default Assignment**

When Direct Online starter type is selected, the default assignment and settings of digital inputs and digital outputs are as follows:

| DI parameters   | DI01 settings   | DI02 settings | DI03 settings | DI04 settings    |
|-----------------|-----------------|---------------|---------------|------------------|
| Trigger type    | Active high     | Active low    | Active high   | Active high      |
| Input source    | Local-START> DI | Local-STOP DI | Other         | Mode Selection 1 |
| Validation time | 10 ms           | 10 ms         | 10 ms         | 10 ms            |

| DO parameters | DO01 settings      | DO02 settings | DO03 settings |
|---------------|--------------------|---------------|---------------|
| Active type   | Active high        | Active high   | Active high   |
| Input source  | CONTACTOR OUTPUT 1 | Alarm Status  | Trip Status   |
| Тад           | CNTR OP 1          | Alarm DO      | Trip DO       |
| Output type   | Level              | Level         | Level         |

### **Reverse Direct Online**

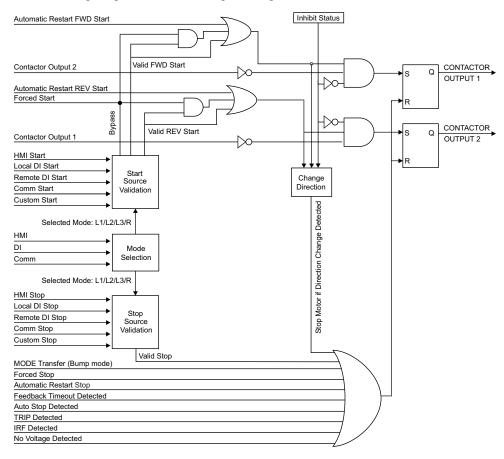

### Description

The Reverse Direct Online starter requires the following digital inputs and outputs:

- Three digital inputs for motor local start forward, local start reverse and local stop.
- Two digital outputs for motor RUN forward command (CONTACTOR OUTPUT 1) and RUN reverse command (CONTACTOR OUTPUT 2).

### Wiring Diagram

Example of wiring diagram of the TeSys Tera system in Reverse Direct Online mode:




KM1: CONTACTOR OUTPUT 1 (Forward)

KM2: CONTACTOR OUTPUT 2 (Reverse)

**NOTE:** Mechanical interlock is connected to KM1 and KM2.

#### **Logical Diagram**



#### The following diagram shows the logical diagram of Reverse Direct Online starter.

#### **Operating Principle**

When Reverse Direct Online mode is selected, motor start is possible from one of the following sources:

- Start command from valid source as per the selected operating mode, page 134.
- Start command from Forced start function, page 151.
- Start command from automatic restart function, page 159.

If a Forward Start command is received from either of the above source and if the motor is **Ready to Start** (that is no inhibit cause detected, page 77), then TeSys Tera system activates the forward main CONTACTOR OUTPUT 1.

Similarly, if a reverse start command is received from either of the above source and if the motor is ready to start (that is no inhibit cause detected, page 77), then TeSys Tera system activates the reverse main CONTACTOR OUTPUT 2.

The direction change logic depends on the Change Direction, page 133.

TeSys Tera system deactivates CONTACTOR OUTPUT 1, and CONTACTOR OUTPUT 2 if any of the following motor stop cause is detected:

- Stop command from valid source as per the selected operating mode, page 134.
- Stop command from a digital input assigned to Forced stop (optional), refer to Input Assignment, page 137.
- Stop command from automatic restart function, page 159.
- Feedback timeout detected, page 131.
- Auto stop detected, page 132.

- Trip detected.
- Device Internal Error Detected, page 79.

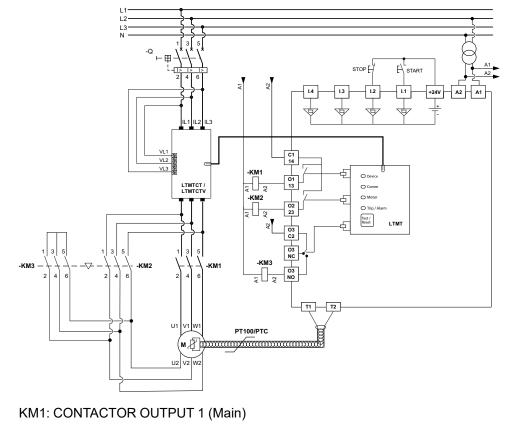
### **DI/DO Default Assignment**

When Reverse Direct Online starter type is selected, the default assignment and settings of digital inputs and digital outputs are as follows:

| DI parameters   | DI01 settings   | DI02 settings | DI03 settings   | DI04 settings    |
|-----------------|-----------------|---------------|-----------------|------------------|
| Trigger type    | Active high     | Active low    | Active high     | Active high      |
| Input source    | Local-START> DI | Local-STOP DI | Local-START< DI | Mode Selection 1 |
| Validation time | 10 ms           | 10 ms         | 10 ms           | 10 ms            |

| DO parameters | DO01 settings      | DO02 settings      | DO03 settings |
|---------------|--------------------|--------------------|---------------|
| Active type   | Active high        | Active high        | Active high   |
| Input source  | CONTACTOR OUTPUT 1 | CONTACTOR OUTPUT 2 | Trip          |
| Тад           | CNTR OP 1          | CNTR OP 2          | Trip DO       |
| Output type   | Level              | Level              | Level         |

### **Star Delta**

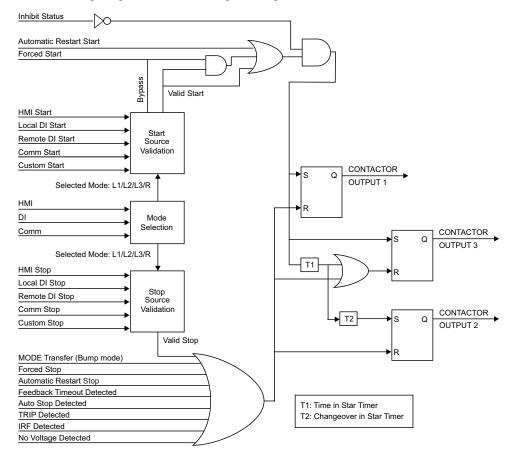

### Description

The Star Delta starter requires the following digital inputs and outputs:

- Two inputs for motor local start and local stop.
- Three outputs for motor RUN command, main connection (CONTACTOR OUTPUT 1), delta connection (CONTACTOR OUTPUT 2), and star connection (CONTACTOR OUTPUT 3).

### Wiring Diagram

Example of wiring diagram of the TeSys Tera system in Star Delta mode:




KM2: CONTACTOR OUTPUT 2 (Delta)

KM3: CONTACTOR OUTPUT 3 (Star)

**NOTE:** Mechanical interlock is connected to KM2 and KM3.

#### **Logical Diagram**



The following diagram shows the logical diagram of the Star Delta starter:

#### **Operating Principle**

When Star Delta mode is selected, motor start is possible from one of the following sources:

- Start command from valid source as per the selected operating mode, page 134.
- Start command from Forced start function, page 151.
- Start command from automatic restart function, page 159.

If a start command is received from either of the above source and if the motor is ready to start (that is no inhibit cause detected, page 77), then TeSys Tera system activates the main CONTACTOR OUTPUT 1 and star CONTACTOR OUTPUT 3 and starts the time in Star timer (T1 or delay 1).

Once the time in Star timer has elapsed, TeSys Tera system deactivates Star CONTACTOR OUTPUT 3 and starts the changeover timer (T2 or delay 2).

Once the changeover timer has elapsed, TeSys Tera system activates Delta CONTACTOR OUTPUT 2.

TeSys Tera system deactivates CONTACTOR OUTPUT 1, CONTACTOR OUTPUT 2, and CONTACTOR OUTPUT 3 if any of the following motor stop cause is detected:

- Stop command from valid source as per the selected operating mode, page 134.
- Stop command from a digital input assigned to Forced stop (optional), refer to Input Assignment, page 137.
- Stop command from automatic restart function, page 159.
- Feedback timeout detected, page 131.

- Auto stop detected, page 132.
- Trip detected.
- Device Internal Error Detected, page 79.

### **DI/DO Default Assignment**

When Star Delta starter type is selected, the default assignment and settings of digital inputs and digital outputs are as follows:

| DI parameters   | DI01 settings   | DI02 settings | DI03 settings | DI04 settings    |
|-----------------|-----------------|---------------|---------------|------------------|
| Trigger type    | Active high     | Active low    | Active high   | Active high      |
| Input source    | Local-START> DI | Local-STOP DI | Other         | Mode Selection 1 |
| Validation time | 10 ms           | 10 ms         | 10 ms         | 10 ms            |

| DO parameters | DO01 settings      | DO02 settings      | DO03 settings      |
|---------------|--------------------|--------------------|--------------------|
| Active type   | Active high        | Active high        | Active high        |
| Input source  | CONTACTOR OUTPUT 1 | CONTACTOR OUTPUT 2 | CONTACTOR OUTPUT 3 |
| Tag           | CNTR OP 1          | CNTR OP 2          | CNTR OP 3          |
| Output type   | Level              | Level              | Level              |

### **Delay Settings**

| Parameter | Description      | Setting range                      | Deafult value |
|-----------|------------------|------------------------------------|---------------|
| Delay 1   | Start timer      | 0.01 to 600.00 s in step of 0.01 s | 10.00 s       |
| Delay 2   | Changeover timer | 0.01 to 600.00 s in step of 0.01 s | 0.30 s        |

### **Forced Start Function**

### Description

Forced start function allows user to force the motor to start when the motor is in inhibit status due to thermal inhibit, thermal trip or maximum number of starts inhibit.

### **A**WARNING

#### LOSS OF MOTOR PROTECTION

- Clearing the thermal inhibit or protection, and maximum number of starts inhibit can cause motor overheating or/and fire.
- Continued operation with inhibited thermal protection should be limited to applications where immediate restart is vital.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

To configure forced start function:

- Enable forced start function, refer to Motor Starter Settings, page 129.
- Configure one digital input for forced start, refer to Input Assignment , page 137.
- Configure thermal overload protection with reset mode as Auto, refer to Thermal Overload, page 94.

#### **Operating Principle**

If the motor is stopped due to thermal trip or maximum number of starts reached, it is possible to force the motor to start by using the forced start digital input and one Start command from any source.

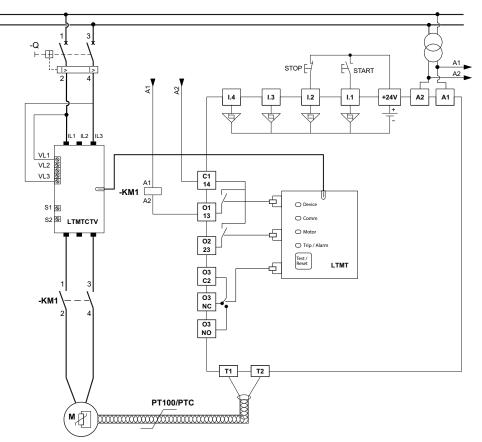
On detection of forced start digital input, TeSys Tera system waits for the start command from any source for 5 s.

On detection of forced start with start command from any of the source, TeSys Tera system bypasses the thermal inhibit, the thermal trip inhibit, Direction inhibit and maximum starts inhibit and activates the contactor output. During motor starting, TeSys Tera system forces or blocks the thermal memory to 90% or the block level if block function is enabled in thermal overload protection function till a time corresponding to the trip class setting is elapsed (time is 5 s for class 5 setting, 40 s for class 40 setting).

TeSys Tera system will stop the motor if any of the following motor stop cause is detected:

- Stop command from valid source as per the selected Operating Mode, page 134.
- Stop command from a digital input assigned to Forced stop (optional), refer to Input Assignment, page 137.
- Stop command from Auto restart function, page 159.
- Feedback timeout detected, page 131.
- Auto stop detected, page 132.
- · Trip detected.
- Device internal error detected, page 79.

## **Single Phase Motor Application**


### Description

TeSys Tera system can support the three-phase or single-phase motor.

In starter settings, select the required type of motor as three-phase or singlephase from the parameter setting. Default configuration will be three-phase.

### Wiring Diagram

Example of wiring diagram of the Direct Online mode with single-phase motor:



#### **Disabled Functions**

In single-phase mode, following functions are disabled:

- Metering functions:
  - Current measurement : IL2 and IL3 RMS currents, current phase sequence, average current and current imbalance.
  - Voltage measurement : VL2-L3 and VL3-L1 RMS voltages, voltage phase sequence, average voltage and voltage imbalance.
  - Calculated ground current.
  - THD measurement of L2 and L3 current and voltage.

- Protection functions:
  - Current imbalance, current phase loss, and current phase reversal protections.
  - Voltage imbalance, voltage phase loss, and voltage phase reversal protections.
  - Calculated ground fault protections.

## **Motor Control Function**

#### What's in This Chapter

| Maximum Number of Starts   |  |
|----------------------------|--|
| Voltage Dip Management     |  |
| Load Shedding              |  |
| Auto Restart               |  |
| Anti-Backspin Timer        |  |
| Stop Error Detection       |  |
| Excessive Start Time       |  |
| Block Output               |  |
| Device internal protection |  |
|                            |  |

### **Maximum Number of Starts**

### Description

The maximum number of starts function helps to prevents the damage to the motor from frequent starts. This function allows the motor to start only for a pre-specified number within a given period of time. If the number of starts exceeds the set value, then this function keeps the LTMT main unit in inhibit mode, which helps to prevent any further motor start.

#### **Parameter Setting**

The maximum number of starts function has the following configurable settings:

| Parameter           | Setting range                            | Default value |
|---------------------|------------------------------------------|---------------|
| Function            | <ul><li>Disable</li><li>Enable</li></ul> | Enable        |
| Permissive Starts   | 1–30 in step of 1                        | 6 starts      |
| Reference Time      | 15–60 m in step of 1                     | 30 m          |
| Inhibit Period      | 1–120 m in step of 1                     | 5 m           |
| Time between Starts | 0–120 m in step of 1                     | 0 m           |

## **Voltage Dip Management**

#### **Overview**

When a voltage dip is detected, the LTMT main unit can perform two different functions to shed and reconnect the load automatically.

Selection is done through the voltage dip mode parameter:

| If Voltage Dip Mode is | Then                                        |
|------------------------|---------------------------------------------|
| None                   | Voltage dip functions are disabled          |
| Load Shedding          | Load shedding function is enabled, page 157 |
| Auto Restart           | Auto Restart function is enabled , page 159 |

Load Shedding and Auto Restart functions exclude each other.

### **Load Shedding**

### Description

The LTMT main unit provides load shedding, which you can use to deactivate noncritical loads if voltage level is substantially reduced. For example, use load shedding when power is transferred from a main utility supply to a backup generator system, where the backup generator system can supply power only to a limited number of critical loads.

The LTMT main unit only monitors load shedding when Load Shedding is selected.

With the load shedding function enabled, the LTMT main unit monitors the average phase voltage and:

- Reports a load shedding condition and stops the motor when voltage falls below a configurable voltage dip threshold and stays below the threshold for the duration of a configurable load shedding timer.
- Clears the load shedding condition when voltage rises above a configurable Voltage dip restart threshold and remains above the threshold for the duration of a configurable load shedding restart timer.

When the LTMT main unit clears the load shedding condition:

- In Maintained start configuration, it issues a Run command to restart the motor.
- In Momentary start configuration, it does not automatically restart the motor.

If your application includes another device that externally provides load shedding, the LTMT main unit load shedding function should not be enabled.

All voltage dip thresholds and timers can be adjusted when the LTMT main unit is in its normal operating state. When a load shedding timer is counting at the time it is adjusted, the new duration time does not become effective until the timer expires.

#### **Functional Characteristics**

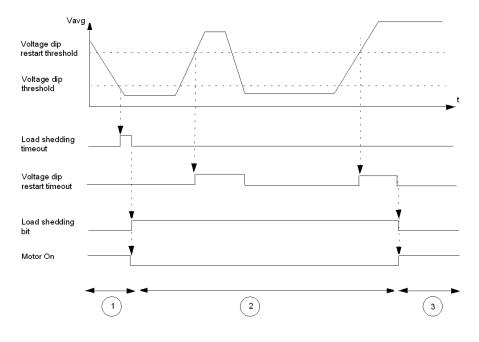
The load shedding function includes the following features:

- Two thresholds
  - Voltage Dip Threshold
  - Voltage Dip Restart Threshold
- Two time delays
  - Load Shedding Timeout
  - Voltage Dip Restart Timeout
- One status flag
  - Load Shedding
- One counting statistic
  - Load Sheddings Count

#### **Parameter Settings**

The load shedding function has the following parameters:

| Parameter                                                                      | Setting range                                                        | Default value          |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|
| Function                                                                       | <ul><li>Disable</li><li>Load shedding</li><li>Auto restart</li></ul> | Disable                |
| Load Shedding Timeout                                                          | 1–9999 s in step of 1 s                                              | 10 s                   |
| Voltage dip threshold                                                          | 20–90% of nominal voltage in step of 5%                              | 90% of nominal voltage |
| Voltage Dip Restart Timeout                                                    | 0–9999 s in step of 1 s                                              | 2 s                    |
| Voltage dip restart threshold         20 -95% of nominal voltage in step of 5% |                                                                      | 95% of nominal voltage |


### **Technical Characteristics**

The load shedding function has the following characteristics:

| Characteristics    | Value               |
|--------------------|---------------------|
| Trip time accuracy | +/- 0.1 s or +/- 5% |

### **Timing Sequence**

The following diagram is an example of the timing sequence for the load shedding function, for a maintained start configuration with automatic restart:



1 Motor running

- 2 Load shed; motor stopped
- 3 Load shed cleared; motor auto-restart (maintained operation)

### **Auto Restart**

### Description

The LTMT main unit provides auto restart.

With the auto restart function enabled, the LTMT main unit monitors the instantaneous phase voltage and detects voltage dip conditions. The voltage dip detection shares some parameters with the load shedding function.

Three restart sequences are managed by the function according to the duration of the voltage dip:

- Immediate restart: The motor restarts automatically.
- · Delayed restart: The motor restarts automatically after a timeout.
- Manual restart: The motor restarts manually. A Run command is necessary.

All auto restart timers can be adjusted when the LTMT main unit is in its normal operating state. When an auto restart timer is counting at the time it is adjusted, the new duration time does not become effective until the timer expires.

### **Functional Characteristics**

The auto restart function includes the following features:

- Three time delays:
  - Auto Restart Immediate Timeout
  - Auto Restart Delayed Timeout
  - Voltage Dip Restart Timeout
- Five status flags:
  - Voltage Dip Detection: the LTMT main unit is in a dip condition
  - Voltage Dip Occurred: a dip has been detected in the last 4.5 s
  - Auto Restart Immediate Condition
  - Auto Restart Delayed Condition
  - Auto Restart Manual Condition
- Three counting statistics:
  - Auto Restart Immediate Count
  - Auto Restart Delayed Count
  - Auto Restart Manual Count

#### **Parameter Settings**

The auto restart function has the following parameters:

| Parameter                      | Setting range                                                        | Default value          |
|--------------------------------|----------------------------------------------------------------------|------------------------|
| Voltage dip mode               | <ul><li>Disable</li><li>Load shedding</li><li>Auto restart</li></ul> | Disable                |
| Voltage dip threshold          | 20–90% of nominal voltage                                            | 90% of nominal voltage |
| Voltage dip restart threshold  | 20–95% of nominal voltage                                            | 95% of nominal voltage |
| Auto restart immediate timeout | 0–0.4 s in increments of 0.1 s                                       | 0.2 s                  |

| Parameter                    | Setting range                                                                                      | Default value |
|------------------------------|----------------------------------------------------------------------------------------------------|---------------|
| Auto restart delayed timeout | <ul> <li>0–300 s: timeout setting in increments of 1 s</li> <li>301 s: timeout infinite</li> </ul> | 4 s           |
| Voltage dip restart timeout  | 0–9999 s in increments of 1 s                                                                      | 2 s           |
| Bypass Stop DI               | Disable     Enable                                                                                 | Disable       |

#### **Technical Characteristics**

The auto restart function has the following characteristics:

| Characteristics | Value               |
|-----------------|---------------------|
| Timing accuracy | +/- 0.1 s or +/- 5% |

#### **Auto Restart Behavior**

The auto restart behavior is characterized by the voltage dip duration that is the amount of time passed from the voltage loss until the voltage restoration.

The two possible settings are:

- Immediate restart timeout.
- Delayed restart timeout (with delay defined by Restart Delay Time).

The following diagram shows the auto restart phases:

| Immediate Restart                 | Delayed Restart              | Manual Restart |
|-----------------------------------|------------------------------|----------------|
| Auto restart immediate<br>timeout |                              |                |
| <►                                |                              |                |
| · · · · ·                         |                              |                |
| -                                 | Auto restart delayed timeout |                |

If the voltage dip duration is less than the immediate restart timeout and if the voltage dip is the second one occurring within 1 s, then the motor will require a delayed restart.

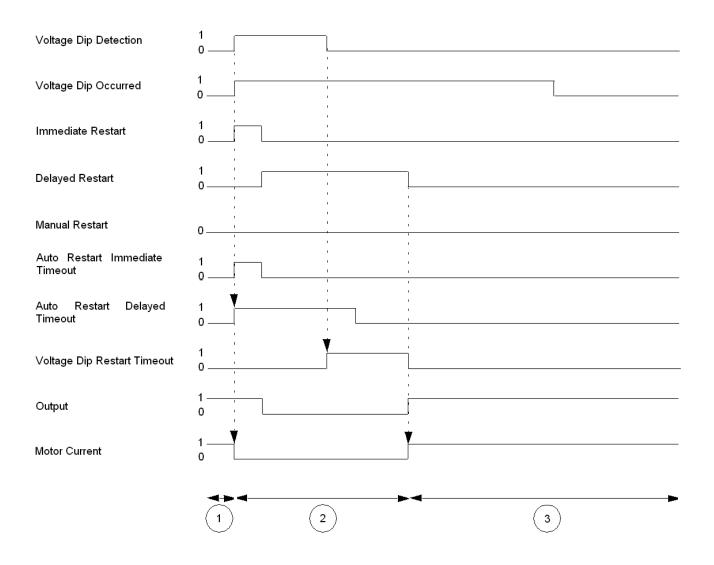
When a delayed restart is active (the delay timer is running):

- The timer is paused for the duration of the dip if a voltage dip occurs.
- The delayed restart is canceled if a start or stop command occurs.

#### **Timing Sequence - Immediate Restart**

The following diagram is an example of the timing sequence when an immediate restart occurs:

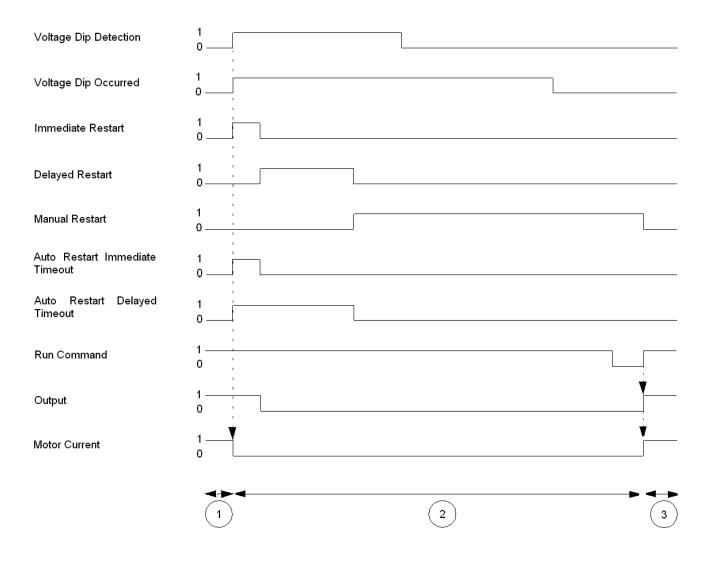
| Voltage Dip Detection             |   |
|-----------------------------------|---|
| Voltage Dip Occurred              |   |
| Immediate Restart                 |   |
| Delayed Restart                   | 0 |
| Manual Restart                    | 0 |
| Auto Restart Immediate<br>Timeout |   |
| Auto Restart Delayed<br>Timeout   |   |
| Output                            |   |
| Motor Current                     |   |
|                                   |   |


1 Motor running

2 Voltage dip detected, motor stopped

 ${\bf 3}$  Voltage dip cleared, motor auto restart

### **Timing Sequence - Delayed Restart**


The following diagram is an example of the timing sequence when a delayed restart occurs:



- 1 Motor running
- 2 Voltage dip detected, motor stopped
- **3** Voltage dip cleared, motor auto restart

### **Timing Sequence - Manual Restart**

The following diagram is an example of the timing sequence when a manual restart occurs:



1 Motor running

2 Voltage dip detected, motor stopped

3 Voltage dip cleared, motor auto restart

### **Bypass Stop DI**

If the bypass Stop DI function is enabled and a voltage dip occurs, TeSys Tera system bypasses the stop command received through DI (Local Stop DI and Remote Stop DI).

If there is no voltage dip, the TeSys Tera system will not bypass the stop command, even if the bypass Stop DI is enabled.

**NOTE:** This function is applicable only with auto restart function.

### **A A DANGER**

#### HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- If Bypass Stop function is enabled, use appropriate external interlocks to stop the motor.
- Configure appropriate voltage dip, restore threshold and nominal voltage.
- Post installation and configuration, the motor control functionality should be checked before energizing the motor.

Failure to follow these instructions will result in death or serious injury.

## **Anti-Backspin Timer**

### Description

Anti-Backspin timer is used to wait until the motor is mechanically stopped.

Once the motor is stopped (electrically), this function keeps the LTMT main unit in inhibit mode until the predefined time delay has elapsed.

### **Parameter Setting**

The anti-backspin timer function has the following configurable settings:

| Parameter  | Setting range                            | Default value |
|------------|------------------------------------------|---------------|
| Function   | <ul><li>Disable</li><li>Enable</li></ul> | Disable       |
| Time Delay | 0–60000 s in step of 1 s                 | 0 s           |

### **Stop Error Detection**

### Description

If after giving the Stop command, due to welded contactor, if the motor does not stop, in such cases, motor stop error detection function gives the trip signal to stop the motor in alternate way.

This function monitors the current after the Stop signal is set. If any of the three phase currents is still present for the time specified in time delay setting, after the Stop signal is set, then the function triggers a trip signal.

**NOTE:** Make sure that the motor stop error detection trip signal is configured to any of the TeSys Tera digital output to control the alternate contactor or to inform upstream devices.

#### **Parameter Setting**

The Motor stop error detection function has the following configurable settings:

| Parameter  | Setting range                            | Default value  |
|------------|------------------------------------------|----------------|
| Function   | <ul><li>Disable</li><li>Enable</li></ul> | Disable        |
| Time Delay | 0.1–6000.0 s in step of 0.1 s            | 1 s            |
| Reset Mode | Reset key     DI     Communication       | DI + Reset Key |

### **Excessive Start Time**

### Description

The excessive start time protection is necessary when the motor takes more time to start than the preset time. The motor draws high current at the starting time (five to six times of Full Load Current). If the motor continues to draw higher current even after the starting time, it causes insulation loss and burning of the windings.

RUN state of the motor is detected by RUN threshold parameter of the excessive start time settings.

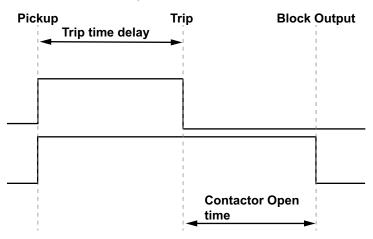
If the excessive start time function is enabled, LTMT main unit triggers the trip, if motor state is START and the predefined time delay is elapsed.

If the Excessive Start Time function is disabled, LTMT main unit detects the motor state as RUN, after the predefined time delay has elapsed.

#### **Parameter Setting**

The excessive start time function has the following configurable settings:

| Parameter                                                | Setting range                                                                  | Default Value  |
|----------------------------------------------------------|--------------------------------------------------------------------------------|----------------|
| Function                                                 | <ul><li>Disable</li><li>Enable</li></ul>                                       | Disable        |
| Time Delay                                               | 0.1–6000.0 s in step of 0.1 s                                                  | 10 s           |
| Reset Mode                                               | <ul> <li>Reset key</li> <li>DI</li> <li>Communication</li> <li>Auto</li> </ul> | DI + Reset Key |
| Auto-Reset Delay (applicable only if Reset mode is Auto) | 0.0–6000.0 s in step of 0.1 s                                                  | 0 s            |
| Run Threshold                                            | 80 to 300% of IFLC in step of 1%                                               | 100% of IFLC   |


### **Block Output**

### Description

Block Output function gives indication to upstream relays to block the trip, if one of the following protection functions detects a trip:

- Short time over-current protection
- Calculated ground fault protection
- · Measured ground fault protection

If TeSys Tera system detects pickup of any of the above mentioned protection, TeSys Tera system Block Output will be active which can be configured to digital output to inform upstream relays. Once TeSys Tera system issues trip for any of the above mentioned protection, the Block Output will be deactivated after the **Contactor/Breaker Open Time** set.



#### **Parameters Settings**

The Block Output function has the following configurable settings:

| Parameter                   | Setting range                            | Default Value |
|-----------------------------|------------------------------------------|---------------|
| Function                    | <ul><li>Disable</li><li>Enable</li></ul> | Disable       |
| Contactor/Breaker Open Time | 0.00–600.00 s in step of 0.01 s          | 0 s           |

# **Device internal protection**

### **Parameters Settings**

The device internal protection function has the following configurable settings:

| Parameter                  | Setting range                                                | Default Value  |
|----------------------------|--------------------------------------------------------------|----------------|
| Time Delay                 | 0.1–6000.00 s in step of 0.01 s                              | 1 s            |
| Reset Mode                 | <ul><li>Reset key</li><li>DI</li><li>Communication</li></ul> | DI + Reset Key |
| Internal Temperature Alarm | <ul><li>Disable</li><li>Enable</li></ul>                     | Enable         |

# **Appendices**

#### What's in This Part

| Trip Code                  |     |
|----------------------------|-----|
| Event Code                 |     |
| Device Internal Error Code |     |
| Input Source               | 191 |

# **Trip Code**

| Trip code | Trip description                |
|-----------|---------------------------------|
| 1         | Thermal overload trip           |
| 2         | Locked rotor trip               |
| 3         | Stalled rotor trip              |
| 4         | Definite time overcurrent trip  |
| 5         | Normal inverse overcurrent trip |
| 6         | Short time overcurrent trip     |
| 7         | Calculated ground trip          |
| 8         | Measured ground trip            |
| 9         | Phase under current trip        |
| 10        | Current imbalance trip          |
| 11        | Current phase loss trip         |
| 12        | Current phase reversal trip     |
| 13        | Phase under voltage trip        |
| 14        | Phase over voltage trip         |
| 15        | Voltage phase loss trip         |
| 16        | Voltage imbalance trip          |
| 17        | Voltage phase reversal trip     |
| 18        | Under frequency trip            |
| 19        | Over frequency trip             |
| 20        | Excessive start time trip       |
| 21        | Communication loss trip         |
| 22        | Over Temperature trip           |
| 23        | Under power trip                |
| 24        | Over power trip                 |
| 25        | Under power factor trip         |
| 26        | Reserved                        |
| 27        | Device internal trip            |
| 28        | HMI communication loss trip     |
| 29        | Wiring error detection trip     |
| 30-32     | Reserved                        |
| 33        | Interlock 1 trip                |
| 34        | Interlock 2 trip                |
| 35        | Interlock 3 trip                |
| 36        | Interlock 4 trip                |
| 37        | Interlock 5 trip                |
| 38        | Interlock 6 trip                |
| 39        | Interlock 7 trip                |
| 40        | Interlock 8 trip                |
| 41        | Interlock 9 trip                |
| 42        | Interlock 10 trip               |

| Trip code | Trip description                |
|-----------|---------------------------------|
| 43        | Interlock 11 trip               |
| 44        | Interlock 12 trip               |
| 45–48     | Reserved                        |
| 49        | LTMT main unit temperature      |
| 50-94     | Reserved                        |
| 95        | Stucked reset key               |
| 96        | Logic test interrupted trip     |
| 97        | Motor stop error detection trip |
| 98        | Reserved                        |

## **Event Code**

## **Alarm Events**

| Event code | Description                            |
|------------|----------------------------------------|
| 1          | Thermal overload alarm                 |
| 2          | Thermal overload alarm reset           |
| 3          | Locked rotor alarm                     |
| 4          | Locked rotor alarm reset               |
| 5          | Stalled rotor alarm                    |
| 6          | Stalled rotor alarm reset              |
| 7          | Definite time overcurrent alarm        |
| 8          | Definite time overcurrent alarm reset  |
| 9          | Normal inverse overcurrent alarm       |
| 10         | Normal inverse overcurrent alarm reset |
| 11         | Short time overcurrent alarm           |
| 12         | Short time overcurrent alarm reset     |
| 13         | Calculated ground fault alarm          |
| 14         | Calculated ground fault alarm reset    |
| 15         | Measured ground fault alarm            |
| 16         | Measured ground fault alarm reset      |
| 17         | Phase under current alarm              |
| 18         | Phase under current alarm reset        |
| 19         | Current imbalance alarm                |
| 20         | Current imbalance alarm reset          |
| 21         | Current phase loss alarm               |
| 22         | Current phase loss alarm reset         |
| 23         | Current phase reversal alarm           |
| 24         | Current phase reversal alarm reset     |
| 25         | Phase under voltage alarm              |
| 26         | Phase under voltage alarm reset        |
| 27         | Phase over voltage alarm               |
| 28         | Phase over voltage alarm reset         |
| 29         | Voltage phase loss alarm               |
| 30         | Voltage phase loss alarm reset         |
| 31         | Voltage imbalance alarm                |
| 32         | Voltage imbalance alarm reset          |
| 33         | Voltage phase reversal alarm           |
| 34         | Voltage phase reversal alarm reset     |
| 35         | Under frequency alarm                  |
| 36         | Under frequency alarm reset            |
| 37         | Over frequency alarm                   |
| 38         | Over frequency alarm reset             |
| 39-40      | Reserved                               |
| UT TU      |                                        |

| Event code | Description                                 |
|------------|---------------------------------------------|
| 41         | Communication loss alarm                    |
| 42         | Communication loss alarm reset              |
| 43         | Over temperature alarm                      |
| 44         | Over temperature alarm reset                |
| 45         | Under power alarm                           |
| 46         | Under power alarm reset                     |
| 47         | Over power alarm                            |
| 48         | Over power alarm reset                      |
| 49         | Under power factor alarm                    |
| 50         | Under power factor alarm reset              |
| 51-52      | Reserved                                    |
| 51-52      | Device internal temperature alarm           |
| 54         |                                             |
|            | Device internal temperature alarm reset     |
| 55<br>56   | HMI communication loss alarm                |
| 557-64     | HMI communication loss alarm reset Reserved |
| 65         | Interlock 1 alarm                           |
| 66         | Interlock 1 alarm reset                     |
| 67         | Interlock 2 alarm                           |
| 68         | Interlock 2 alarm reset                     |
| 69         | Interlock 3 alarm                           |
| 70         | Interlock 3 alarm reset                     |
| 71         | Interlock 4 alarm                           |
| 72         | Interlock 4 alarm reset                     |
| 73         | Interlock 5 alarm                           |
| 74         | Interlock 5 alarm reset                     |
| 75         | Interlock 6 alarm                           |
| 76         | Interlock 6 alarm reset                     |
| 77         | Interlock 7 alarm                           |
| 78         | Interlock 7 alarm reset                     |
| 79         | Interlock 8 alarm                           |
| 80         | Interlock 8 alarm reset                     |
| 81         | Interlock 9 alarm                           |
| 82         | Interlock 9 alarm reset                     |
| 83         | Interlock 10 alarm                          |
| 84         | Interlock 10 alarm reset                    |
| 85         | Interlock 11 alarm                          |
| 86         | Interlock 11 alarm reset                    |
| 87         | Interlock 12 alarm                          |
| 88         | Interlock 12 alarm reset                    |
| 89–96      | Reserved                                    |
| 97         | LTMT main unit temperature alarm            |
| 98         | LTMT main unit temperature alarm reset      |
| 99-128     | Reserved                                    |
| 129-192    | Reserved                                    |

# **Pickup Events**

| Event code | Description                             |
|------------|-----------------------------------------|
| 193        | Thermal overload pickup                 |
| 194        | Thermal overload pickup reset           |
| 195        | Locked rotor pickup                     |
| 196        | Locked rotor pickup reset               |
| 197        | Stalled rotor pickup                    |
| 198        | Stalled rotor pickup reset              |
| 199        | Definite time overcurrent pickup        |
| 200        | Definite time overcurrent pickup reset  |
| 201        | Normal inverse overcurrent pickup       |
| 202        | Normal inverse overcurrent pickup reset |
| 203        | Short time overcurrent pickup           |
| 204        | Short time overcurrent pickup reset     |
| 205        | Calculated ground fault pickup          |
| 206        | Calculated ground fault pickup reset    |
| 207        | Measured ground fault pickup            |
| 208        | Measured ground fault pickup reset      |
| 209        | Phase under current pickup              |
| 210        | Phase under current pickup reset        |
| 211        | Current imbalace pickup                 |
| 212        | Current imbalace pickup reset           |
| 213        | Current phase loss pickup               |
| 214        | Current phase loss pickup reset         |
| 215        | Current phase reversal pickup           |
| 216        | Current phase reversal pickup reset     |
| 217        | Phase under voltage pickup              |
| 218        | Phase under voltage pickup reset        |
| 219        | Phase over voltage pickup               |
| 220        | Phase over voltage pickup reset         |
| 221        | Voltage phase loss pickup               |
| 222        | Voltage phase loss pickup reset         |
| 223        | Voltage imbalace pickup                 |
| 224        | Voltage imbalace pickup reset           |
| 225        | Voltage phase reversal pickup           |
| 226        | Voltage phase reversal pickup reset     |
| 227        | Under frequency pickup                  |
| 228        | Under frequency pickup reset            |
| 229        | Over frequency pickup                   |
| 230        | Over frequency pickup reset             |
| 231        | Excessive start time pickup             |
| 232        | Excessive start time pickup reset       |

| Event code | Description                         |
|------------|-------------------------------------|
| 233        | Communication loss pickup           |
| 234        | Communication loss pickup reset     |
| 235        | Over temperature pickup             |
| 236        | Over temperature pickup reset       |
| 237        | Under power pickup                  |
| 238        | Under power pickup reset            |
| 239        | Over power pickup                   |
| 240        | Over power pickup reset             |
| 241        | Under power factor pickup           |
| 242        | Under power factor pickup reset     |
| 243-244    | Reserved                            |
| 245        | Device internal pickup              |
| 246        | Device internal pickup reset        |
| 247        | HMI communication loss pickup       |
| 248        | HMI communication loss pickup reset |
| 249-256    | Reserved                            |
| 257        | Interlock 1 pickup                  |
| 258        | Interlock 1 pickup reset            |
| 259        | Interlock 2 pickup                  |
| 260        | Interlock 2 pickup reset            |
| 261        | Interlock 3 pickup                  |
| 262        | Interlock 3 pickup reset            |
| 263        | Interlock 4 pickup                  |
| 264        | Interlock 4 pickup reset            |
| 265        | Interlock 5 pickup                  |
| 266        | Interlock 5 pickup reset            |
| 267        | Interlock 6 pickup                  |
| 268        | Interlock 6 pickup reset            |
| 269        | Interlock 7 pickup                  |
| 270        | Interlock 7 pickup reset            |
| 271        | Interlock 8 pickup                  |
| 272        | Interlock 8 pickup reset            |
| 273        | Interlock 9 pickup                  |
| 274        | Interlock 9 pickup reset            |
| 275        | Interlock 10 pickup                 |
| 276        | Interlock 10 pickup reset           |
| 277        | Interlock 11 pickup                 |
| 278        | Interlock 11 pickup reset           |
| 279        | Interlock 12 pickup                 |
| 280        | Interlock 12 pickup reset           |
| 281-288    | Reserved                            |
| 289        | LTMT main unit temperature pickup   |

| Event code | Description                             |
|------------|-----------------------------------------|
| 290        | LTMT main unit temperature pickup reset |
| 291-384    | Reserved                                |

# **Digital Input Events**

| Event code | Description |
|------------|-------------|
| 385        | DI 1 ON     |
| 386        | DI 1 OFF    |
| 387        | DI 2 ON     |
| 388        | DI 2 OFF    |
| 389        | DI 3 ON     |
| 390        | DI 3 OFF    |
| 391        | DI 4 ON     |
| 392        | DI 4 OFF    |
| 393        | DI 5 ON     |
| 394        | DI 5 OFF    |
| 395        | DI 6 ON     |
| 396        | DI 6 OFF    |
| 397        | DI 7 ON     |
| 398        | DI 7 OFF    |
| 399        | DI 8 ON     |
| 400        | DI 8 OFF    |
| 401        | DI 9 ON     |
| 402        | DI 9 OFF    |
| 403        | DI 10 ON    |
| 404        | DI 10 OFF   |
| 405        | DI 11 ON    |
| 406        | DI 11 OFF   |
| 407        | DI 12 ON    |
| 408        | DI 12 OFF   |
| 409        | DI 13 ON    |
| 410        | DI 13 OFF   |
| 411        | DI 14 ON    |
| 412        | DI 14 OFF   |
| 413        | DI 15 ON    |
| 414        | DI 15 OFF   |
| 415        | DI 16 ON    |
| 416        | DI 16 OFF   |
| 417        | DI 17 ON    |
| 418        | DI 17 OFF   |
| 419        | DI 18 ON    |
| 420        | DI 18 OFF   |
| 421        | DI 19 ON    |
| 422        | DI 19 OFF   |
| 423        | DI 20 ON    |

| Event code | Description |
|------------|-------------|
| 424        | DI 20 OFF   |
| 425        | DI 21 ON    |
| 426        | DI 21 OFF   |
| 427        | DI 22 ON    |
| 428        | DI 22 OFF   |
| 429        | DI 23 ON    |
| 430        | DI 23 OFF   |
| 431        | DI 24 ON    |
| 432        | DI 24 OFF   |
| 433–448    | Reserved    |

# **Digital Output Events**

| Event code | Description |
|------------|-------------|
| 449        | DO 1 ON     |
| 450        | DO 1 OFF    |
| 451        | DO 2 ON     |
| 452        | DO 2 OFF    |
| 453        | DO 3 ON     |
| 454        | DO 3 OFF    |
| 455        | DO 4 ON     |
| 456        | DO 4 OFF    |
| 457        | DO 5 ON     |
| 458        | DO 5 OFF    |
| 459        | DO 6 ON     |
| 460        | DO 6 OFF    |
| 461        | DO 7 ON     |
| 462        | DO 7 OFF    |
| 463        | DO 8 ON     |
| 464        | DO 8 OFF    |
| 465        | DO 9 ON     |
| 466        | DO 9 OFF    |
| 467        | DO 10 ON    |
| 468        | DO 10 OFF   |
| 469        | DO 11 ON    |
| 470        | DO 11 OFF   |
| 471        | DO 12 ON    |
| 472        | DO 12 OFF   |
| 473        | DO 13 ON    |
| 474        | DO 13 OFF   |
| 475-512    | Reserved    |

# **Digital Input Events**

| Event code | Description           |
|------------|-----------------------|
| 513        | Trip reset DI ON      |
| 514        | Trip reset DI OFF     |
| 515        | Breaker close DI ON   |
| 516        | Breaker close DI OFF  |
| 517        | Breaker open DI ON    |
| 518        | Breaker open DI OFF   |
| 519        | Local-START> DI ON    |
| 520        | Local-START> DI OFF   |
| 521        | Local-START>> DI ON   |
| 522        | Local-START>> DI OFF  |
| 523        | Local-STOP DI ON      |
| 524        | Local-STOP DI OFF     |
| 525        | Local-START< DI ON    |
| 526        | Local-START< DI OFF   |
| 527        | Local-START<< DI ON   |
| 528        | Local-START<< DI OFF  |
| 529        | Remote-START> DI ON   |
| 530        | Remote-START> DI OFF  |
| 531        | Remote-START>> DI ON  |
| 532        | Remote-START>> DI OFF |
| 533        | Remote-STOP DI ON     |
| 534        | Remote-STOP DI OFF    |
| 535        | Remote-START< DI ON   |
| 536        | Remote-START< DI OFF  |
| 537        | Remote-START<< DI ON  |
| 538        | Remote-START<< DI OFF |
| 539        | Interlock 1 DI ON     |
| 540        | Interlock 1 DI OFF    |
| 541        | Interlock 2 DI ON     |
| 542        | Interlock 2 DI OFF    |
| 543        | Interlock 3 DI ON     |
| 544        | Interlock 3 DI OFF    |
| 545        | Interlock 4 DI ON     |
| 546        | Interlock 4 DI OFF    |
| 547        | Interlock 5 DI ON     |
| 548        | Interlock 5 DI OFF    |
| 549        | Interlock 6 DI ON     |
| 550        | Interlock 6 DI OFF    |
| 551        | Interlock 7 DI ON     |
| 552        | Interlock 7 DI OFF    |
| 553        | Interlock 8 DI ON     |
| 554        | Interlock 8 DI OFF    |
| 555        | Interlock 9 DI ON     |
| 556        | Interlock 9 DI OFF    |

| Event code | Description                   |
|------------|-------------------------------|
| 557        | Interlock 10 DI ON            |
| 558        | Interlock 10 DI OFF           |
| 559        | Interlock 11 DI ON            |
| 560        | Interlock 11 DI OFF           |
| 561        | Interlock 12 DI ON            |
| 562        | Interlock 12 DI OFF           |
| 563        | Contactor open DI ON          |
| 564        | Contactor open DI OFF         |
| 565        | RUN DI ON                     |
| 566        | RUN DI OFF                    |
| 567        | Block input DI ON             |
| 568        | Block input DI OFF            |
| 569        | Logic test DI ON              |
| 570        | Logic test DI OFF             |
| 571        | Mode selection 1 DI ON        |
| 572        | Mode selection 1 DI OFF       |
| 573        | Mode selection 2 DI ON        |
| 574        | Mode selection 2 DI OFF       |
| 575        | Speed change DI ON            |
| 576        | Speed change DI OFF           |
| 577        | Forced start DI ON            |
| 578        | Forced start DI OFF           |
| 579        | Forced stop DI ON             |
| 580        | Forced stop DI OFF            |
| 581        | Self test without trip DI ON  |
| 582        | Self test without trip DI OFF |
| 583        | Self test with trip DI ON     |
| 584        | Self test with trip DI OFF    |
| 585        | Soft starter reset DI ON      |
| 586        | Soft starter reset DI OFF     |
| 587-640    | Reserved                      |

## **Inhibit Events**

| Event code | Description                 |
|------------|-----------------------------|
| 641        | No voltage inhibit          |
| 642        | No voltage inhibit reset    |
| 643        | Under voltage inhibit       |
| 644        | Under voltage inhibit reset |
| 645        | Trip inhibit                |
| 646        | Trip inhibit reset          |
| 647        | Thermal inhibit             |
| 648        | Thermal inhibit reset       |

| Event code | Description                           |
|------------|---------------------------------------|
| 649        | Max starts inhibit                    |
| 650        | Max starts inhibit reset              |
| 651        | Interlock 1 inhibit                   |
| 652        | Interlock 1 inhibit reset             |
| 653        | Interlock 2 inhibit                   |
| 654        | Interlock 2 inhibit reset             |
| 655        | Interlock 3 inhibit                   |
| 656        | Interlock 3 inhibit reset             |
| 657        | Interlock 4 inhibit                   |
| 658        | Interlock 4 inhibit reset             |
| 659        | Interlock 5 inhibit                   |
| 660        | Interlock 5 inhibit reset             |
| 661        | Interlock 6 inhibit                   |
| 662        | Interlock 6 inhibit reset             |
| 663        | Interlock 7 inhibit                   |
| 664        | Interlock 7 inhibit reset             |
| 665        | Interlock 8 inhibit                   |
| 666        | Interlock 8 inhibit reset             |
| 667        | Interlock 9 inhibit                   |
| 668        | Interlock 9 inhibit reset             |
| 669        | Interlock 10 inhibit                  |
| 670        | Interlock 10 inhibit reset            |
| 671        | Interlock 11 inhibit                  |
| 672        | Interlock 11 inhibit reset            |
| 673        | Interlock 12 inhibit                  |
| 674        | Interlock 12 inhibit reset            |
| 675        | Local DI stop inhibit                 |
| 676        | Local DI stop inhibit reset           |
| 677        | Remote DI stop inhibit                |
| 678        | Remote DI stop inhibit reset          |
| 679        | Comm stop inhibit                     |
| 680        | Comm stop inhibit reset               |
| 681        | Forced stop inhibit                   |
| 682        | Forced stop inhibit reset             |
| 683        | Anti backspin inhibit                 |
| 684        | Anti backspin inhibit reset           |
| 685        | Device internal error inhibit         |
| 686        | Device internal error inhibit reset   |
| 687        | Interlock time inhibit                |
| 688        | Interlock time inhibit reset          |
| 689        | Speed change inhibit                  |
| 690        | Speed change inhibit reset            |
| 691        | Custom stop inhibit                   |
| 692        | Custom stop inhibit reset             |
| 693        | Firmware update inhibit               |
|            | · · · · · · · · · · · · · · · · · · · |

| Event code | Description                   |
|------------|-------------------------------|
| 694        | Firmware update inhibit reset |
| 695-768    | Reserved                      |

#### **HMI Command Events**

| Event code | Description                           |
|------------|---------------------------------------|
| 769        | HMI or DTM Start >                    |
| 770        | HMI or DTM start >>                   |
| 771        | HMI or DTM stop                       |
| 772        | HMI or DTM start <                    |
| 773        | HMI or DTM start <<                   |
| 774        | HMI or DTM trip reset                 |
| 775        | HMI or DTM inhibit reset (max starts) |
| 776        | HMI or DTM reset starts counter       |
| 777        | HMI or DTM reset stops counter        |
| 778        | HMI or DTM clear thermal memory       |
| 779        | HMI or DTM reset total run hour       |
| 780        | HMI or DTM reset energy               |
| 781        | HMI or DTM forced start               |
| 782        | HMI or DTM logic test input           |
| 783        | HMI or DTM self test without trip     |
| 784        | HMI or DTM self test with trip        |
| 785        | HMI or DTM reset soft starter         |
| 786        | HMI or DTM reset trip counter         |
| 787-792    | Reserved                              |
| 793        | HMI or DTM reset network port setting |
| 794        | HMI or DTM reset all                  |
| 795        | HMI or DTM clear statistics           |
| 796        | HMI or DTM reset protection setting   |
| 797        | HMI or DTM save reference curve       |
| 798        | HMI or DTM clear trip logs            |
| 799        | HMI or DTM clear event logs           |
| 800        | HMI or DTM factory reset              |

# **Communication Command Events**

| Event code | Description   |
|------------|---------------|
| 801        | COMM Start >  |
| 802        | COMM Start >> |
| 803        | COMM Stop     |
| 804        | COMM Start <  |
| 805        | COMM Start << |

| Event code | Description                     |
|------------|---------------------------------|
| 806        | COMM Trip reset                 |
| 807        | COMMInhibit reset (max starts)  |
| 808        | COMM Reset starts counter       |
| 809        | COMM Reset stops counter        |
| 810        | COMM Clear thermal memory       |
| 811        | COMM Reset total run hour       |
| 812        | COMM Reset energy               |
| 813        | COMM Forced start               |
| 814        | COMM Logic test input           |
| 815        | COMM Self test without trip     |
| 816        | COMMSelf test with trip         |
| 817        | COMMReset soft starter          |
| 818        | COMM Reset trip counter         |
| 819-824    | Reserved                        |
| 825        | COMM Reset network port setting |
| 826        | COMM Reset all                  |
| 827        | COMM Clear statistics           |
| 828        | COMM Reset protection settings  |
| 829        | COMM Save reference curve       |
| 830        | COMM Clear trip logs            |
| 831        | COMM Clear event logs           |
| 832        | COMM Factory reset              |
| 833        | Permissive command 1            |
| 834        | Permissive command 2            |
| 835        | Permissive command 3            |
| 836        | Permissive command 4            |
| 837        | Permissive command 5            |
| 838        | Permissive command 6            |
| 839        | Permissive command 7            |
| 840        | Permissive command 8            |
| 841-896    | Reserved                        |

# **Trip Reset Events**

| Event code | Description                           |
|------------|---------------------------------------|
| 897        | Thermal overload trip reset           |
| 898        | Locked rotor trip reset               |
| 899        | Stalled rotor trip reset              |
| 900        | Definite time overcurrent trip reset  |
| 901        | Normal inverse overcurrent trip reset |
| 902        | Short time overcurrent trip reset     |
| 903        | Calculated ground fault trip reset    |
| 904        | Measured ground fault trip reset      |

| Event code | Description                           |
|------------|---------------------------------------|
| 905        | Phase under current trip reset        |
| 906        | Current imbalance trip reset          |
| 907        | Current phase loss trip reset         |
| 908        | Current phase reversal trip reset     |
| 909        | Phase under voltage trip reset        |
| 910        | Phase over voltage trip reset         |
| 911        | Voltage phase loss trip reset         |
| 912        | Voltage imbalance trip reset          |
| 913        | Voltage phase reversal trip reset     |
| 914        | Under frequency trip reset            |
| 915        | Over frequency trip reset             |
| 916        | Excessive start time trip reset       |
| 917        | Communication loss trip reset         |
| 918        | Over temperature trip reset           |
| 919        | Under power trip reset                |
| 920        | Over power trip reset                 |
| 921        | Under power factor trip reset         |
| 922        | Reserved                              |
| 923        | Device internal trip reset            |
| 924        | HMI communication loss trip reset     |
| 925-928    | Reserved                              |
| 929        | Interlock 1 trip reset                |
| 930        | Interlock 2 trip reset                |
| 931        | Interlock 3 trip reset                |
| 932        | Interlock 4 trip reset                |
| 933        | Interlock 5 trip reset                |
| 934        | Interlock 6 trip reset                |
| 935        | Interlock 7 trip reset                |
| 936        | Interlock 8 trip reset                |
| 937        | Interlock 9 trip reset                |
| 938        | Interlock 10 trip reset               |
| 939        | Interlock 11 trip reset               |
| 940        | Interlock 12 trip reset               |
| 941-944    | Reserved                              |
| 945        | LTMT main unit temperature trip reset |
| 946-991    | Reserved                              |
| 992        | Logic test interrupted trip reset     |
| 993        | Motor stop error detection trip reset |
| 994-1024   | Reserved                              |

## **Digital Output**

| Event code | Description            |
|------------|------------------------|
| 1025       | Device internal DO ON  |
| 1026       | Device internal DO OFF |
| 1027       | Trip DO ON             |
| 1028       | Trip DO OFF            |
| 1029       | Alarm DO ON            |
| 1030       | Alarm DO OFF           |
| 1031       | Pickup DO ON           |
| 1032       | Pickup DO OFF          |
| 1033       | inhibit DO ON          |
| 1034       | inhibit DO OFF         |
| 1035       | Block OP DO ON         |
| 1036       | Block OP DO OFF        |
| 1037       | CNTR OP1 DO ON         |
| 1038       | CNTR OP1 DO OFF        |
| 1039       | CNTR OP2 DO ON         |
| 1040       | CNTR OP2 DO OFF        |
| 1041       | CNTR OP3 DO ON         |
| 1042       | CNTR OP3 DO OFF        |
| 1043       | CNTR OP4 DO ON         |
| 1044       | CNTR OP4 DO OFF        |
| 1045       | CNTR OP5 DO ON         |
| 1046       | CNTR OP5 DO OFF        |
| 1047       | CNTR OP6 DO ON         |
| 1048       | CNTR OP6 DO OFF        |
| 1049-1152  | Reserved               |

## **System and Control Events**

| Event code | Description                    |
|------------|--------------------------------|
| 1153       | Power down                     |
| 1154       | Power up                       |
| 1155       | Mode changed to Local1         |
| 1156       | Mode changed to Local2         |
| 1157       | Mode changed to Local3         |
| 1158       | Mode changed to Remote         |
| 1159       | Device internal error detected |
| 1160       | Self test WO trip start        |
| 1161       | Self test with trip start      |
| 1162       | Logic test start               |
| 1163       | Reset button OFF               |
| 1164       | Reset button ON                |

| Event code | Description                                               |
|------------|-----------------------------------------------------------|
| 1165       | Reserved                                                  |
| 1166       | Date/Time updated                                         |
| 1167       | Invalid start command                                     |
| 1168       | Start error detected - No feedback                        |
| 1169       | Start error detected - Inhibit present                    |
| 1170       | Start error detected - Current or RUN DI feedback present |
| 1171       | Start error detected - No access                          |
| 1172       | Stop error detected - No access                           |
| 1173       | Logic test interrupted                                    |
| 1174       | Communication loss detected                               |
| 1175       | Communication restored                                    |
| 1176       | Mode shifted from Remote to Local1                        |
| 1177       | Auto restart                                              |
| 1178       | Auto stopped                                              |
| 1179       | Factory reset – test/reset key                            |
| 1180       | Bypass stop DI function disabled                          |
| 1181       | Bypass stop DI function enabled                           |
| 1182       | HMI Login Success                                         |
| 1183       | HMI Login Error - Incorrect Pin                           |
| 1184       | HMI Logout Success                                        |
| 1185       | HMI Logout - Session Timeout                              |
| 1186       | HMI Logout- Connection Lost                               |
| 1187       | DTM Login Success                                         |
| 1188       | DTM Login Error - Incorrect Pin                           |
| 1189       | DTM Logout Success                                        |
| 1190       | DTM Logout - Session Timeout                              |
| 1191       | DTM Logout- Connection Lost                               |
| 1192       | DTM New Pin Set                                           |
| 1193       | DTM New Pin set Error - Invalid pin format                |
| 1194       | DTM Pin Change Success                                    |
| 1195       | DTM Pin Change Error                                      |
| 1196       | DTM Pin Change Error - Invalid pin format                 |
| 1197       | DTM Pin Reset Success                                     |
| 1198       | DTM Pin Reset Error - Incorrect Pin                       |
| 1199       | COMM Login Success                                        |
| 1200       | COMM Login Error – Incorrect Pin                          |
| 1201       | COMM Logout Success                                       |
| 1202       | COMM Logout – Session Timeout                             |
| 1203       | COMM Logout – Connection Lost                             |
| 1204       | COMM New Pin Set                                          |
| 1205       | COMM New Pin Set Error – Invalid pin format               |
| 1206       | COMM Pin Change Success                                   |
| 1207       | COMM Change Error – Incorrect Pin                         |

| Event code | Description                        |
|------------|------------------------------------|
| 1208       | COMM Change Error – Invalid Format |
| 1209       | COMM Password Reset Success        |
| 1210       | COMM Reset Error – Incorrect Pin   |
| 1211       | Error - Pin not saved              |
| 1212       | Error - Wrong LoginID              |
| 1213–1216  | Reserved                           |
| 1217       | Custom Start >                     |
| 1218       | Custom Start >>                    |
| 1219       | Custom Stop                        |
| 1220       | Custom Start <                     |
| 1221       | Custom Start <<                    |
| 1222       | Start > Command Executed           |
| 1223       | Start >> Command Executed          |
| 1224       | Start < Command Executed           |
| 1225       | Start << Command Executed          |
| 1226       | Stop Command Executed              |
| 1227–1280  | Reserved                           |
| 1281       | DPV1 Start >                       |
| 1282       | DPV1 Start >>                      |
| 1283       | DPV1 Stop                          |
| 1284       | DPV1 Start <                       |
| 1285       | DPV1 Start <<                      |
| 1286       | DPV1 Trip reset                    |
| 1287       | DPV1 Inhibit reset (Max Starts)    |
| 1288       | DPV1 Reset starts counter          |
| 1289       | DPV1 Reset stops counter           |
| 1290       | DPV1 Clear thermal memory          |
| 1291       | DPV1 Reset total run hour          |
| 1292       | DPV1 Reset energy                  |
| 1293       | DPV1 Forced start                  |
| 1294       | DPV1 Logic test                    |
| 1295       | DPV1 Self test without trip        |
| 1296       | DPV1 Self test with trip           |
| 1297       | DPV1 Reset soft starter            |
| 1298       | DPV1 Reset trip counter            |
| 1299–1312  | Reserved                           |
| 1313       | DPV1 Permissive Command 1          |
| 1314       | DPV1 Permissive Command 2          |
| 1315       | DPV1 Permissive Command 3          |
| 1316       | DPV1 Permissive Command 4          |
| 1317       | DPV1 Permissive Command 5          |
| 1318       | DPV1 Permissive Command 6          |
| 1319       | DPV1 Permissive Command 7          |
| 1320       | DPV1 Permissive Command 8          |
| 1321-1344  | Reserved                           |

| Event code | Description                                    |
|------------|------------------------------------------------|
| 1345       | LTMT main unit FW valid                        |
| 1346       | LTMT main unit invalid sign                    |
| 1347       | LTMT main unit incompatible ver                |
| 1348       | LTMT main unit FW update success               |
| 1349–1360  | Reserved                                       |
| 1361       | LTMTCT/LTMTCTV sensor module FW valid          |
| 1362       | LTMTCT/LTMTCTV sensor module invalid sign      |
| 1363       | LTMTCT/LTMTCTV sensor module incompatible ver  |
| 1364       | LTMTCT/LTMTCTV sensor module FW update success |
| 1365       | LTMTCT/LTMTCTV sensor module FW update timeout |
| 1366–1376  | Reserved                                       |
| 1377       | LTMT expansion unit FW valid                   |
| 1378       | LTMT expansion unit invalid sign               |
| 1379       | LTMT expansion unit incompatible ver           |
| 1380       | LTMT expansion unit FW update success          |
| 1381       | LTMT expansion unit FW update timeout          |
| 1382–1408  | Reserved                                       |

#### **Device Internal Error Code**

| Detected internal error code | Description                                               |
|------------------------------|-----------------------------------------------------------|
| 1                            | Sensor module communication error detected                |
| 2                            | Sensor module communication error reset                   |
| 3                            | Expansion module communication error detected             |
| 4                            | Expansion module communication error reset                |
| 5                            | HMI communication error detected                          |
| 6                            | HMI communication error reset                             |
| 7                            | EEPROM interface error detected                           |
| 8                            | EEPROM interface error reset                              |
| 9                            | EEPROM checksum error detected                            |
| 10                           | EEPROM checksum error reset                               |
| 11                           | Configuration error detected                              |
| 12                           | Configuration error reset                                 |
| 13                           | PROFIBUS DP interface error detected                      |
| 14                           | PROFIBUS DP interface error reset                         |
| 15                           | Internal temperature major error detected                 |
| 16                           | Internal temperature major error reset                    |
| 17                           | Main unit watchdog timeout detected                       |
| 18                           | Main unit watchdog timeout error reset                    |
| 19                           | Low Battery detected                                      |
| 20                           | Low Battery error reset                                   |
| 21–22                        | Reserved                                                  |
| 23                           | LTMT main unit temperature input error detected           |
| 24                           | LTMT main unit temperature input error reset              |
| 25                           | Energy register overflow                                  |
| 26                           | Energy register overflow error reset                      |
| 27                           | Error detected during expansion unit initiation           |
| 28                           | Expansion unit initiation error reset                     |
| 29                           | RTC initialization error detected                         |
| 30                           | RTC initialization error reset                            |
| 31                           | Internal temperature minor error detected                 |
| 32                           | Internal temperature minor error reset                    |
| 33–64                        | Reserved                                                  |
| 65                           | LTMTCT/LTMTCTV sensor module watchdog timeout detected    |
| 66                           | LTMTCT/LTMTCTV sensor module watchdog timeout error reset |
| 67                           | ADC conversion error detected                             |
| 68                           | ADC conversion error reset                                |
| 69                           | Flash error detected                                      |
| 70                           | Flash error reset                                         |
| 71                           | UART error detected                                       |
| 72                           | UART error reset                                          |
| 73                           | Voltage configuration not detected                        |

| Detected internal error code | Description                              |
|------------------------------|------------------------------------------|
| 74                           | Voltage configuration error reset        |
| 75–76                        | Reserved                                 |
| 77                           | Calibration error detected               |
| 78                           | Calibration error reset                  |
| 79                           | VL1 measurement error detected           |
| 80                           | VL1 measurement error reset              |
| 81                           | VL2 measurement error detected           |
| 82                           | VL2 measurement error reset              |
| 83                           | VL3 measurement error detected           |
| 84                           | VL3 measurement error reset              |
| 85                           | IL1 low gain measurement error detected  |
| 86                           | IL1 low gain measurement error reset     |
| 87                           | IL1 high gain measurement error detected |
| 88                           | IL1 high gain measurement error reset    |
| 89                           | IL2 low gain measurement error detected  |
| 90                           | IL2 low gain measurement error reset     |
| 91                           | IL2 high gain measurement error detected |
| 92                           | IL2 high gain measurement error reset    |
| 93                           | IL3 low gain measurement error detected  |
| 94                           | IL3 low gain measurement error reset     |
| 95                           | IL3 high gain measurement error detected |
| 96                           | IL3 high gain measurement error reset    |
| 97–128                       | Reserved                                 |

# **Input Source**

| Index    | Input source          |
|----------|-----------------------|
| 0        | None                  |
| 1        | Fixed 0               |
| 2        | Fixed 1               |
| 3–6      | Reserved              |
| 7        | Reset_Key (Main Unit) |
| 8        | DI 1                  |
| 9        | DI 2                  |
| 10       | DI 3                  |
| 11       | DI 4                  |
| 12       | DI 5                  |
| 13       | DI 6                  |
| 14       | DI 7                  |
| 15       | DI 8                  |
| 16       | DI 9                  |
| 17       | DI 10                 |
| 18       | DI 11                 |
| 19       | DI 12                 |
| 20       | DI 13                 |
| 21       | DI 14                 |
| 22       | DI 15                 |
| 23       | DI 16                 |
| 24       | DI 17                 |
| 25       | DI 18                 |
| 26       | DI 19                 |
| 27       | DI 20                 |
| 28       | DI 21                 |
| 29       | DI 22                 |
| 30       | DI 23                 |
| 31       | DI 24                 |
| 40       | DO 1                  |
| 41       | DO 2                  |
| 42       | DO 3                  |
| 43       | DO 4                  |
| 44       | DO 5                  |
| 45       | DO 6                  |
| 46       | DO 7                  |
| 47       | DO 8                  |
| 48       | DO 9                  |
| 49       | DO 10                 |
| 50       | DO 11                 |
| 51       | DO 12                 |
| 52       | DO 13                 |
| 53– 231  | Reserved              |
| JJ- ZJ I | 1/2921420             |

| Index   | Input source                      |
|---------|-----------------------------------|
| 232     | Pickup Status                     |
| 233     | Alarm Status                      |
| 234     | Trip Status                       |
| 235     | Motor Stop Error Detection        |
| 236     | Reserved                          |
| 237     | Block Output                      |
| 238–247 | Reserved                          |
| 248     | Motor Stop                        |
| 249     | Motor Start                       |
| 250     | Motor Run                         |
| 251     | Motor Inhibit                     |
| 252–263 | Reserved                          |
| 264     | Thermal Overload Alarm            |
| 265     | Locked Rotor Alarm                |
| 266     | Stalled Rotor Alarm               |
| 267     | Definite Time Overcurrent Alarm   |
| 268     | Normal Inverse Overcurrent Alarm  |
| 269     | Short Time Overcurrent Alarm      |
| 270     | Calculated Ground Current Alarm   |
| 271     | Measured Ground Current Alarm     |
| 272     | Under Current Alarm               |
| 273     | Current Imbalance Alarm           |
| 274     | Current Phase Loss Alarm          |
| 275     | Current Phase Reversal Alarm      |
| 276     | Under Voltage Alarm               |
| 277     | Over Voltage Alarm                |
| 278     | Voltage Phase Loss Alarm          |
| 279     | Voltage Imbalance Alarm           |
| 280     | Voltage Phase Reversal Alarm      |
| 281     | Under Frequency Alarm             |
| 282     | Over Frequency Alarm              |
| 283     | Reserved                          |
| 284     | Communication Loss Alarm          |
| 285     | Over Temperature Alarm            |
| 286     | Under Power Alarm                 |
| 287     | Over Power Alarm                  |
| 288     | Under Power Factor Alarm          |
| 289–295 | Reserved                          |
| 296     | Thermal Overload Pickup           |
| 297     | Locked Rotor Pickup               |
| 298     | Stalled Rotor Pickup              |
| 299     | Definite Time Overcurrent Pickup  |
| 300     | Normal Inverse Overcurrent Pickup |
| 301     | Short Time Overcurrent Pickup     |
|         |                                   |

| Index | Input source                     |
|-------|----------------------------------|
| 302   | Calculated Ground Current Pickup |
| 303   | Measured ground current Pickup   |
| 304   | Under Current Pickup             |
| 305   | Current Imbalance Pickup         |
| 306   | Current Phase Loss Pickup        |
| 307   | Current Phase Reversal Pickup    |
| 308   | Under Voltage Pickup             |
| 309   | Over Voltage Pickup              |
| 310   | Voltage Phase Loss Pickup        |
| 311   | Voltage Imbalance Pickup         |
| 312   | Voltage Phase Reversal Pickup    |
| 313   | Under Frequency Pickup           |
| 314   | Over Frequency Pickup            |
| 315   | Excessive Start Time Pickup      |
| 316   | Communication Loss Pickup        |
| 317   | Over Temperature Pickup          |
| 318   | Under Power Pickup               |
| 319   | Over Power Pickup                |
| 320   | Under Power Factor Pickup        |
| 321   | Reserved                         |
| 328   | Thermal Overload Trip            |
| 329   | Locked Rotor Trip                |
| 330   | Stalled Rotor Trip               |
| 331   | Definite Time Overcurrent Trip   |
| 332   | Normal Inverse Overcurrent Trip  |
| 333   | Short Time Overcurrent Trip      |
| 334   | Calculated Ground Current Trip   |
| 335   | Measured Ground Current Trip     |
| 336   | Under Current Trip               |
| 337   | Current Imbalance Trip           |
| 338   | Current Phase Loss Trip          |
| 339   | Current Phase Reversal Trip      |
| 340   | Under Voltage Trip               |
| 341   | Over Voltage Trip                |
| 342   | Voltage Phase Loss Trip          |
| 343   | Voltage Imbalance Trip           |
| 344   | Voltage Phase Reversal Trip      |
| 345   | Under Frequency Trip             |
| 346   | Over Frequency Trip              |
| 347   | Excessive Start Time Trip        |
| 348   | Communication Loss Trip          |
| 349   | Over Temperature Trip            |

| Index          | Input source                   |
|----------------|--------------------------------|
| 350            | Under Power Trip               |
| 351            | Over Power Trip                |
| 352            | Under Power factor Trip        |
| 353–359        | Reserved                       |
| 360            | Interlock 1 Alarm              |
| 361            | Interlock 2 Alarm              |
| 362            | Interlock 3 Alarm              |
| 363            | Interlock 4 Alarm              |
| 364            | Interlock 5 Alarm              |
| 365            | Interlock 6 Alarm              |
| 366            | Interlock 7 Alarm              |
| 367            | Interlock 8 Alarm              |
| 368            | Interlock 9 Alarm              |
| 369            | Interlock 10 Alarm             |
| 370            | Interlock 11 Alarm             |
| 371<br>372–375 | Interlock 12 Alarm<br>Reserved |
| 372-375        | Interlock 1 Pickup             |
| 377            |                                |
|                | Interlock 2 Pickup             |
| 378            | Interlock 3 Pickup             |
| 379            | Interlock 4 Pickup             |
| 380            | Interlock 5 Pickup             |
| 381            | Interlock 6 Pickup             |
| 382            | Interlock 7 Pickup             |
| 383            | Interlock 8 Pickup             |
| 384            | Interlock 9 Pickup             |
| 385            | Interlock 10 Pickup            |
| 386            | Interlock 11 Pickup            |
| 387            | Interlock 12 Pickup            |
| 388–391        | Reserved                       |
| 392            | Interlock 1 Trip               |
| 393            | Interlock 2 Trip               |
| 394            | Interlock 3 Trip               |
| 395            | Interlock 4 Trip               |
| 396            | Interlock 5 Trip               |
| 397            | Interlock 6 Trip               |
| 398            | Interlock 7 Trip               |
| 399            | Interlock 8 Trip               |
| 400            | Interlock 9 Trip               |
| 401            | Interlock 10 Trip              |
| 402            | Interlock 11 Trip              |
| 403            | Interlock 12 Trip              |
| 404–503        | Reserved                       |
| 504            | Contactor Output 1             |
|                |                                |

| Index      | Input source                               |
|------------|--------------------------------------------|
| 505        | Contactor Output 2                         |
| 506        | Contactor Output 3                         |
| 507        | Contactor Output 4                         |
| 508        | Contactor Output 5                         |
| 509–535    | Reserved                                   |
| 536        | Motor Forward Running                      |
| 537        | Motor Reverse Running                      |
| 538        | Motor Fast Forward Running                 |
| 539        | Motor Fast Reverse Running                 |
| 540        | Motor Running in Star (Forward)            |
| 541        | Motor Running in Delta (Forward)           |
| 542        |                                            |
|            | Motor Running in Star (Reverse)            |
| 543        | Motor Running in Delta (Reverse)           |
| 544        | Motor in Star-Delta Changeover (Forward)   |
| 545        | Motor in Star-Delta Changeover (Reverse)   |
| 546        | Interlocking Time Active                   |
| 547        | Change-Over Pause Active                   |
| 548–551    | Reserved                                   |
| 552        | Status - Permissive Command 1              |
| 553        | Status - Permissive Command 2              |
| 554        | Status - Permissive Command 3              |
| 555        | Status - Permissive Command 4              |
| 556        | Status - Permissive Command 5              |
| 557        | Status - Permissive Command 6              |
| 558        | Status - Permissive Command 7              |
| 559        | Status - Permissive Command 8              |
| 560–583    | Reserved                                   |
| 584        | No Voltage Inhibit                         |
| 585        | Under Voltage Inhibit                      |
| 586        | Trip Inhibit                               |
| 587        | Thermal Inhibit                            |
| 588        | Max Starts Inhibit                         |
| 589<br>590 | Interlock 1 Inhibit<br>Interlock 2 Inhibit |
| 590        | Interlock 3 Inhibit                        |
| 592        | Interlock 4 Inhibit                        |
| 593        | Interlock 5 Inhibit                        |
| 594        | Interlock 6 Inhibit                        |
| 595        | Interlock 7 Inhibit                        |
| 596        | Interlock 8 Inhibit                        |
| 597        | Interlock 9 Inhibit                        |
| 598        | Interlock 10 Inhibit                       |
| 599        | Interlock 11 Inhibit                       |
| 600        | Interlock 12 Inhibit                       |

| Index   | Input source                                          |
|---------|-------------------------------------------------------|
| 601     | Local DI Stop Inhibit                                 |
| 602     | Remote DI Stop Inhibit                                |
| 603     | Communication Stop Inhibit                            |
| 604     | Forced Stop Inhibit                                   |
| 605     | Antibackspin Inhibit                                  |
| 606     | Reserved                                              |
| 607     | Direction Change Inhibit                              |
| 608     | Speed Change Inhibit                                  |
| 609     | Custom Stop Inhibit                                   |
| 610–615 | Reserved                                              |
| 616     | Sensor Module Communication Error Detected            |
| 617     | Expansion Module Communication Error Detected         |
| 618     | HMI Communication Error Detected                      |
| 619     | EEPROM Interface Error Detected                       |
| 620     | EEPROM Checksum Error Detected                        |
| 621     | Configuration Error Detected                          |
| 622     | PROFIBUS DP Interface Error Detected                  |
| 623     | Internal Temperature Error Detected                   |
| 624     | Watchdog Timeout Detected                             |
| 625     | Low Battery Detected                                  |
| 626     | Reserved                                              |
| 627     | Reserved                                              |
| 628     | Energy Register Overflow                              |
| 629     | Error Detected During Expansion Module Initialization |
| 630     | RTC Initialization Error Detected                     |
| 631     | Internal Temperature Minor Error Detected             |
| 632–647 | Reserved                                              |
| 648     | Watchdog Timeout Detected                             |
| 649     | ADC Conversion Error Detected                         |
| 650     | Flash Error Detected                                  |
| 651     | Reserved                                              |
| 652     | Voltage Configuration Not Detected                    |
| 653     | Reserved                                              |
| 654     | Calibration Error Detected                            |
| 655     | VL1 Measurement Error Detected                        |
| 656     | VL2 Measurement Error Detected                        |
| 657     | VL3 Measurement Error Detected                        |
| 658     | IL1 Low Gain Measurement Error Detected               |
| 659     | IL1 High Gain Measurement Error Detected              |
| 660     | IL2 Low Gain Measurement Error Detected               |
| 661     | IL2 High Gain Measurement Error Detected              |
| 662     | IL3 Low Gain Measurement Error Detected               |
| 663     | IL3 High Gain Measurement Error Detected              |

| Index     | Input source |
|-----------|--------------|
| 664–65534 | Reserved     |
| 65535     | Custom Logic |

Schneider Electric 35 rue Joseph Monier 92500 Rueil Malmaison France

+ 33 (0) 1 41 29 70 00

www.se.com

As standards, specifications, and design change from time to time, please ask for confirmation of the information given in this publication.

© 2025 - Schneider Electric. All rights reserved.

DOCA0257EN-00